A note on convex stochastic dominance

被引:47
作者
Wong, WK
Li, CK
机构
[1] Natl Univ Singapore, Dept Econ, Singapore 11960, Singapore
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
ascending stochastic dominance; descending stochastic dominance; convex stochastic dominance; risk takers; risk averters;
D O I
10.1016/S0165-1765(98)00231-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
Fishburn's convex stochastic dominance theorem is extended to cover arbitrary distributions. Third-order stochastic dominance, and situations for risk takers (averters) are discussed. A result on convex combinations of several continuous distributions is also generalized. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 16 条
[1]  
[Anonymous], REV EC STUDIES, DOI DOI 10.2307/2296205
[2]  
[Anonymous], 1967, THEORY GAMES EC BEHA
[3]  
Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
[4]   ON DETERMINATION OF STOCHASTIC-DOMINANCE OPTIMAL SETS [J].
BAWA, VS ;
BODURTHA, JN ;
RAO, MR ;
SURI, HL .
JOURNAL OF FINANCE, 1985, 40 (02) :417-431
[5]  
Bian G., 1997, J APPL STAT SCI, V6, P21
[6]   STOCHASTIC-DOMINANCE AND MOMENTS OF DISTRIBUTIONS [J].
FISHBURN, PC .
MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (01) :94-100
[7]  
LI CK, 1998, IN PRESS NOTE STOCHA
[8]  
Markowitz H. M., 1970, Portfolio Selection: Efficient Diversification of Investments
[9]  
Meyer J., 1977, INT ECON REV, V18, P476
[10]   STOCHASTIC-DOMINANCE OF HIGHER ORDERS AND ITS IMPLICATIONS [J].
MUKHERJEE, SP ;
CHATTERJEE, A .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (07) :1977-1986