ON n-FI-INJECTIVE AND n-FI- FLAT MODULES

被引:4
|
作者
Gao, Zenghui [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Math, Chengdu 610225, Sichuan, Peoples R China
关键词
Coherent ring; FP-injective dimension; n-FI-injective module; n-FI-flat module; Precover; Preenvelope; COHERENT RINGS; COVERS; DIMENSIONS; ENVELOPES;
D O I
10.1080/00927872.2011.585677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, n a fixed non-negative integer and FIn (F-n) the class of all left (right) R-modules of FP-injective (flat) dimension at most n. A left R-module M (resp., right R-module N) is called n-FI-injective (resp., n-FI-flat) if Ext(R)(1)(F, M) = 0 (resp., Tor(1)(R)(N, F) = 0) for any F is an element of FIn. It is proved that a left R-module M is n-FI-injective if and only if M is a kernel of an FIn-precover f : A -> B of a left R-module B with A injective. For a left coherent ring R, it is shown that a finitely presented right R-module M is n-FI-flat if and only if M is a cokernel of an F-n-preenvelope K -> F of a right R-module K with F flat. Some known results are extended. Finally, we investigate n-FI-injective and n-FI-flat modules over left coherent rings with FP-id(R-R) <= n.
引用
收藏
页码:2757 / 2770
页数:14
相关论文
共 50 条
  • [1] RELATIVE FI-INJECTIVE AND FI-FLAT MODULES
    Duan, Luling
    Ouyang, Baiyu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2011, 42 (06): : 417 - 441
  • [2] FI-injective and FI-flat modules
    Mao, Lixin
    Ding, Nanqing
    JOURNAL OF ALGEBRA, 2007, 309 (01) : 367 - 385
  • [3] Relative FI-injective and FI-flat modules
    Luling Duan
    Baiyu Ouyang
    Indian Journal of Pure and Applied Mathematics, 2011, 42 : 417 - 441
  • [4] n-FLAT AND n-FP-INJECTIVE MODULES
    Yang, Xiaoyan
    Liu, Zhongkui
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (02) : 359 - 369
  • [5] n-Flat and n-FP-injective modules
    Xiaoyan Yang
    Zhongkui Liu
    Czechoslovak Mathematical Journal, 2011, 61 : 359 - 369
  • [6] Category of n-weak injective and n-weak flat modules with respect to special super presented modules
    Amini, Mostafa
    Amzil, Houda
    Bennis, Driss
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4924 - 4939
  • [7] n-STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES
    Zhao, Guoqiang
    Huang, Zhaoyong
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 3044 - 3062
  • [8] Relative Gorenstein n-weak injective and n-weak flat modules
    Amini, Mostafa
    Amzil, Houda
    Bennis, Driss
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 298 - 313
  • [9] M-Injective (Flat) and Strongly -Injective (Flat) Modules
    Ozen, Tahire
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 301 - 314
  • [10] RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES
    Zeng, Yuedi
    Chen, Jianlong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 11 - 24