Optimal convergence rates for the strong solutions to the compressible Navier-Stokes equations with potential force

被引:7
作者
Wang, Wenjun [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes equations; Potential force; Global existence; Optimal convergence rate; HEAT-CONDUCTIVE FLUIDS; VISCOUS-FLUID; STEADY FLOW; HALF-SPACE; DECAY; MOTION; BEHAVIOR; R-3;
D O I
10.1016/j.nonrwa.2016.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the effect of external force on the large-time behavior of solutions to the Cauchy problem for the three-dimensional full compressible Navier-Stokes equations. We construct the global unique solution near the stationary profile to the system for the small H-2(R-3) initial data. Moreover, the optimal L-P-L-2 (1 <= p <= 2) time decay rates of the solution to the system are established via a low frequency and high frequency decomposition. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 378
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1985, SOBOLEV SPACES
[2]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[3]  
Duan R. J., 2007, MATH MOD METH APPL S, V17, P1
[4]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[5]   Decay of Dissipative Equations and Negative Sobolev Spaces [J].
Guo, Yan ;
Wang, Yanjin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2165-2208
[6]   Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves [J].
Hoff, D ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (04) :597-614
[7]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[8]   Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 177 (02) :231-330
[9]   On large-time behavior of solutions to the compressible navier-stokes equations in the half space in R3 [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (02) :89-159
[10]  
Kawashima S., 1983, SYSTEMS HYPERBOLIC P