Cryptography from Pseudorandom Quantum States

被引:34
作者
Ananth, Prabhanjan [1 ]
Qian, Luowen [2 ]
Yuen, Henry [3 ]
机构
[1] UCSB, Santa Barbara, CA USA
[2] Boston Univ, Boston, MA 02215 USA
[3] Columbia Univ, New York, NY USA
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT I | 2022年 / 13507卷
关键词
D O I
10.1007/978-3-031-15802-5_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pseudorandom states, introduced by Ji, Liu and Song (Crypto'18), are efficiently-computable quantum states that are computationally indistinguishable from Haar-random states. One-way functions imply the existence of pseudorandom states, but Kretschmer (TQC'20) recently constructed an oracle relative to which there are no one-way functions but pseudorandom states still exist. Motivated by this, we study the intriguing possibility of basing interesting cryptographic tasks on pseudorandom states. We construct, assuming the existence of pseudorandom state generators that map a lambda-bit seed to a omega(log lambda)-qubit state, (a) statistically binding and computationally hiding commitments and (b) pseudo onetime encryption schemes. A consequence of (a) is that pseudorandom states are sufficient to construct maliciously secure multiparty computation protocols in the dishonest majority setting. Our constructions are derived via a new notion called pseudorandom function-like states (PRFS), a generalization of pseudorandom states that parallels the classical notion of pseudorandom functions. Beyond the above two applications, we believe our notion can effectively replace pseudorandom functions in many other cryptographic applications.
引用
收藏
页码:208 / 236
页数:29
相关论文
共 30 条
[1]   Quantum computing, postselection, and probabilistic polynomial-time [J].
Aaronson, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063) :3473-3482
[2]  
Ananth P., 2022, PREPARATION UNPUB
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   One-Way Functions Imply Secure Computation in a Quantum World [J].
Bartusek, James ;
Coladangelo, Andrea ;
Khurana, Dakshita ;
Ma, Fermi .
ADVANCES IN CRYPTOLOGY (CRYPTO 2021), PT I, 2021, 12825 :467-496
[5]  
BEAVER D, 1990, PROCEEDINGS OF THE TWENTY SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, P503, DOI 10.1145/100216.100287
[6]  
Bennett C. H., 1984, P INT C COMPUTERS SY, P175, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[7]  
BENNETT CH, 1992, LECT NOTES COMPUT SC, V576, P351
[8]   Classical Binding for Quantum Commitments [J].
Bitansky, Nir ;
Brakerski, Zvika .
THEORY OF CRYPTOGRAPHY, TCC 2021, PT I, 2021, 13042 :273-298
[9]  
Bouland Adam, 2020, LIPIcs, V151, DOI [DOI 10.4230/LIPICS.ITCS.2020.63, 10.4230/LIPIcs.ITCS.2020.63]
[10]  
Brakerski Z., 2020, Quantum garbled circuits