Graphs that admit right angle crossing drawings

被引:17
作者
Arikushi, Karin [2 ]
Fulek, Radoslav [1 ]
Keszegh, Balazs [1 ,3 ]
Moric, Filip [1 ]
Toth, Csaba D. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Calgary, Calgary, AB T2N 1N4, Canada
[3] Alfred Renyi Inst Math, Budapest, Hungary
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2012年 / 45卷 / 04期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
Discharging; Crossing lemma; Polyline drawing; Right angle crossing drawing; Archimedean tiling;
D O I
10.1016/j.comgeo.2011.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider right angle crossing (RAC) drawings of graphs in which the edges are represented by polygonal arcs and any two edges can cross only at a right angle. We show that if a graph with n vertices admits a RAC drawing with at most 1 bend or 2 bends per edge, then the number of edges is at most 6.5n and 74.2n, respectively. This is a strengthening of a recent result of Didimo et al. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 14 条
[1]   On the maximum number of edges in quasi-planar graphs [J].
Ackerman, Eyal ;
Tardos, Gabor .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) :563-571
[2]  
Ajtai M., 1982, THEORY PRACTICE COMB, P9, DOI [10.1016/S0304-0208(08), DOI 10.1016/S0304-0208(08), DOI 10.1016/S0304-0208(08)73484-4]
[3]  
Angelini P, 2010, LECT NOTES COMPUT SC, V5849, P21, DOI 10.1007/978-3-642-11805-0_5
[4]  
[Anonymous], LNCS
[5]   SOLUTION OF 4-COLOR-MAP PROBLEM [J].
APPEL, K ;
HAKEN, W .
SCIENTIFIC AMERICAN, 1977, 237 (04) :108-&
[6]  
Di Giacomo E, 2010, LECT NOTES COMPUT SC, V5849, P15, DOI 10.1007/978-3-642-11805-0_4
[7]  
Didimo W, 2009, LECT NOTES COMPUT SC, V5664, P206, DOI 10.1007/978-3-642-03367-4_19
[8]  
DUJMOVIC V, 2010, P 16 S COMP AUSTR TH, V109, P19
[9]  
Hlineny P., 2000, LECT TEXT SPRING SCH
[10]  
Huang WD, 2008, IEEE PACIFIC VISUALISATION SYMPOSIUM 2008, PROCEEDINGS, P41