Maximal Perturbation Bounds for the Robust Stability of Fractional-Order Linear Time-Invariant Parameter-Dependent Systems

被引:2
|
作者
Qian, Ruo-Nan [1 ,2 ]
Lu, Jun-Guo [1 ,2 ]
Zhang, Qing-Hao [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order system; linear time-invariant parameter-dependent system; robust stability; maximal perturbation bound; STABILIZATION; INTERVAL;
D O I
10.1109/TCSII.2021.3119656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief investigates the maximal perturbation bounds of fractional-order linear time-invariant parameter-dependent systems with the commensurate order alpha is an element of(0,1). Firstly, new sufficient and necessary conditions for the maximal perturbation bounds of such parameter-dependent systems with the single parameter are given using the Kronecker sum. Secondly, the results with the single parameter case are extended to the cases with the multiple parameters. Ultimately numerical examples are presented to verify that the proposed methods in this brief are valid.
引用
收藏
页码:1257 / 1261
页数:5
相关论文
共 50 条
  • [41] ROBUST STABILIZATION OF LINEAR TIME-INVARIANT SYSTEMS
    VERMA, MS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) : 870 - 875
  • [42] The distributional solution of the fractional-order descriptor linear time-invariant system and its application in fractional circuits
    Feng, Zaiyong
    Chen, Ming Zhong
    Ye, Linghua
    Wu, Lingling
    IAENG International Journal of Applied Mathematics, 2020, 50 (03) : 549 - 557
  • [43] Fractional-order linear time invariant swarm systems: asymptotic swarm stability and time response analysis
    Soorki, Mojtaba Naderi
    Tavazoei, Mohammad Saleh
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 845 - 854
  • [44] Exact method for the stability analysis of time delayed linear-time invariant fractional-order systems
    Pakzad, Mohammad Ali
    Pakzad, Sara
    Nekoui, Mohammad Ali
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (16): : 2357 - 2368
  • [45] Parameter-dependent robust stability of uncertain time-delay systems
    Gao, Huijun
    Shi, Peng
    Wang, Junling
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 366 - 373
  • [46] H∞ Output Feedback Control of Linear Time-invariant Fractional-order Systems over Finite Frequency Range
    Cuihong Wang
    Huanhuan Li
    YangQuan Chen
    IEEE/CAA Journal of Automatica Sinica, 2016, 3 (03) : 304 - 310
  • [47] Robust Stability of Time-invariant Systems with Delays
    Yu, Xin
    Li, Yongyong
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 1126 - 1129
  • [48] H∞ and Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect
    Lee, Sang-Chul
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (05):
  • [49] Stability Analysis of Linear Time-Invariant Distributed-Order Systems
    Jiao, Zhuang
    Chen, YangQuan
    Zhong, Yisheng
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 640 - 647
  • [50] Mixed Order Fractional Observers for Minimal Realizations of Linear Time-Invariant Systems
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    Aguila-Camacho, Norelys
    Castro-Linares, Rafael
    ALGORITHMS, 2018, 11 (09)