Maximal Perturbation Bounds for the Robust Stability of Fractional-Order Linear Time-Invariant Parameter-Dependent Systems

被引:2
|
作者
Qian, Ruo-Nan [1 ,2 ]
Lu, Jun-Guo [1 ,2 ]
Zhang, Qing-Hao [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order system; linear time-invariant parameter-dependent system; robust stability; maximal perturbation bound; STABILIZATION; INTERVAL;
D O I
10.1109/TCSII.2021.3119656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief investigates the maximal perturbation bounds of fractional-order linear time-invariant parameter-dependent systems with the commensurate order alpha is an element of(0,1). Firstly, new sufficient and necessary conditions for the maximal perturbation bounds of such parameter-dependent systems with the single parameter are given using the Kronecker sum. Secondly, the results with the single parameter case are extended to the cases with the multiple parameters. Ultimately numerical examples are presented to verify that the proposed methods in this brief are valid.
引用
收藏
页码:1257 / 1261
页数:5
相关论文
共 50 条
  • [31] The identification algorithm for commensurate order linear time-invariant fractional systems
    王振滨
    曹广益
    朱新坚
    Journal of Harbin Institute of Technology, 2005, (05) : 110 - 114
  • [32] Fractional Time-Invariant Compartmental Linear Systems
    Kaczorek, Tadeusz
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (01) : 97 - 102
  • [33] Exact bounds for robust stability of output feedback controlled fractional-order systems with single parameter perturbations
    Zhang, Qing-Hao
    Lu, Jun-Guo
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 207 - 224
  • [34] Stability Analysis of Linear Time-Invariant Fractional Exponential Delay Systems
    Pakzad, Mohammad Ali
    Nekoui, Mohammad Ali
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2014, 61 (09) : 721 - 725
  • [35] Maximal perturbation bounds for robust α-stability of matrix second-order systems with one-parameter perturbations
    Lu, Jun-Guo
    Xiao, Jizhong
    Chen, Weidong
    AUTOMATICA, 2012, 48 (05) : 995 - 998
  • [36] Robust stability check of fractional order linear time invariant systems with interval uncertainties
    Chen, YangQuan
    Ahn, Hyo-Sung
    Podlubny, Igor
    SIGNAL PROCESSING, 2006, 86 (10) : 2611 - 2618
  • [37] Robust stability check of fractional order linear time invariant systems with interval uncertainties
    Chen, YangQuan
    Ahn, Hyo-Sung
    Podlubny, Igor
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 210 - 215
  • [38] Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems
    Chesi, G
    Garulli, A
    Tesi, A
    Vicino, A
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4095 - 4100
  • [39] Robust Finite Time Stability of Fractional-order Linear Delayed Systems with Nonlinear Perturbations
    Chen, Liping
    He, Yigang
    Wu, Ranchao
    Chai, Yi
    Yin, Lisheng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2014, 12 (03) : 697 - 702
  • [40] Robust finite time stability of fractional-order linear delayed systems with nonlinear perturbations
    Liping Chen
    Yigang He
    Ranchao Wu
    Yi Chai
    Lisheng Yin
    International Journal of Control, Automation and Systems, 2014, 12 : 697 - 702