Maximal Perturbation Bounds for the Robust Stability of Fractional-Order Linear Time-Invariant Parameter-Dependent Systems

被引:2
|
作者
Qian, Ruo-Nan [1 ,2 ]
Lu, Jun-Guo [1 ,2 ]
Zhang, Qing-Hao [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order system; linear time-invariant parameter-dependent system; robust stability; maximal perturbation bound; STABILIZATION; INTERVAL;
D O I
10.1109/TCSII.2021.3119656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief investigates the maximal perturbation bounds of fractional-order linear time-invariant parameter-dependent systems with the commensurate order alpha is an element of(0,1). Firstly, new sufficient and necessary conditions for the maximal perturbation bounds of such parameter-dependent systems with the single parameter are given using the Kronecker sum. Secondly, the results with the single parameter case are extended to the cases with the multiple parameters. Ultimately numerical examples are presented to verify that the proposed methods in this brief are valid.
引用
收藏
页码:1257 / 1261
页数:5
相关论文
共 50 条
  • [21] Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls
    Alonso-Quesada, S.
    De la Sen, M.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [22] On parameter-dependent Lyapunov functions for robust stability of linear systems
    Henrion, D
    Arzelier, D
    Peaucelle, D
    Lasserre, JB
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 887 - 892
  • [23] The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems with Regular Pencils
    Batiha, Iqbal M.
    El-Khazali, Reyad
    AlSaedi, Ahmed
    Momani, Shaher
    ENTROPY, 2018, 20 (06)
  • [24] Handling a Commensurate, Incommensurate, and Singular Fractional-Order Linear Time-Invariant System
    Batiha, Iqbal M.
    Talafha, Omar
    Ababneh, Osama Y.
    Alshorm, Shameseddin
    Momani, Shaher
    AXIOMS, 2023, 12 (08)
  • [25] Parameter-dependent Robust Stability of Time-Delay Systems
    Kririm, Said
    Hmamed, Abdelaziz
    Tadeo, Fernando
    14TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL & COMPUTER ENGINEERING STA 2013, 2013, : 79 - 83
  • [26] Delay-Margin Design Approach for Linear Time-Invariant Singular Fractional-Order Systems with Time Delay
    Pakzad, Mohammad Ali
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2503 - 2508
  • [27] STABILITY OF LINEAR TIME-INVARIANT SYSTEMS
    THATHACHAR, MA
    SRINATH, MD
    NARENDRA, KS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) : 335 - +
  • [28] The Eigenvalue Assignment for the Fractional Order Linear Time-Invariant Control Systems
    He, Bin-Xin
    Liu, Hao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [29] Interval estimation for nabla fractional order linear time-invariant systems
    Wei, Yingdong
    Wei, Yiheng
    Wang, Yong
    Xie, Min
    ISA TRANSACTIONS, 2022, 131 : 83 - 94
  • [30] STABILITY OF LINEAR TIME-INVARIANT SYSTEMS
    DESOER, CA
    WU, MY
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1968, CT15 (03): : 245 - +