HOPF BIFURCATION PROBLEM FOR A CLASS OF KOLMOGOROV MODEL WITH A POSITIVE NILPOTENT CRITICAL POINT

被引:1
作者
Du, Chaoxiong [1 ]
Huang, Wentao [2 ]
机构
[1] Changsha Normal Univ, Sch Math, Changsha 410100, Hunan, Peoples R China
[2] Guangxi Normal Univ, Coll Math & Stat, Guilin 541006, Guangxi, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2022年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Hopf bifurcation; nilpotent critical point; kolmogorov model; quasi-Lyapunov constant; LIMIT-CYCLES;
D O I
10.11948/20210276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, We discuss the Hopf bifurcation problem of a three-order positive nilpotent critical point (1, 1) of a class of Kolmogorov model. By using the method offered by [12], we obtain the expressions of quasi-Lyapunov constants with the help of computer algebra system-MATHEMATICA. By analyzing the structure of these quasi-lyapunov constants, we divide them into two kinds of cases and study their bifurcation behavior separately. For case 1, the nilpotent critical point (1, 1) can bifurcate 5 small amplitude limit cycles. For case 2, 6 small amplitude limit cycles can bifurcate from the three-order nilpotent critical point (1, 1). In addition, We also give the integrability conditions (i.e., center condition) for each case. In terms of limit cycle bifurcation for Kolmogorov model with nilpotent positive critical points, our result is new.
引用
收藏
页码:1451 / 1465
页数:15
相关论文
共 15 条
[1]   INVARIANT MEASURES FOR SYSTEMS OF KOLMOGOROV EQUATIONS [J].
Addona, Davide ;
Angiuli, Luciana ;
Lorenzi, Luca .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (03) :764-804
[2]   Behavior of limit cycle bifurcations for a class of quartic Kolmogorov models in a symmetrical vector field [J].
Du, Chaoxiong ;
Liu, Yirong ;
Huang, Wentao .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (5-6) :4094-4108
[3]   Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field [J].
Du Chaoxiong ;
Liu Yirong ;
Huang Wentao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03)
[4]   Three-Dimensional Hopf Bifurcation for a Class of Cubic Kolmogorov Model [J].
Du Chaoxiong ;
Wang Qinlong ;
Huang Wentao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03)
[5]   Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model [J].
Du, Chaoxiong ;
Huang, Wentao .
NONLINEAR DYNAMICS, 2013, 72 (1-2) :197-206
[6]   On the number of limit cycles of polynomial Lienard systems [J].
Han, Maoan ;
Romanovski, Valery G. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1655-1668
[7]   Small Amplitude Limit Cycles and Local Bifurcation of Critical Periods for a Quartic Kolmogorov System [J].
He, Dongping ;
Huang, Wentao ;
Wang, Qinlong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
[8]   Limit cycles in a general Kolmogorov model [J].
Huang, XC ;
Zhu, LM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1393-1414
[9]   BIFURCATIONS OF LIMIT CYCLES CREATED BY A MULTIPLE NILPOTENT CRITICAL POINT OF PLANAR DYNAMICAL SYSTEMS [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02) :497-504
[10]   Limit cycles bifurcating of Kolmogorov systems in R2 and in R3 [J].
Llibre, Jaume ;
Paulina Martinez, Y. ;
Valls, Claudia .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91