Bottom-Up versus Top-Down Strategies for Morphology Control in Polymer-Based Biomedical Materials

被引:33
作者
Cook, Alexander B. [1 ]
Clemons, Tristan D. [2 ]
机构
[1] Ist Italian Tecnol, Lab Nanotechnol Precis Med, Via Morego 30, I-16163 Genoa, Italy
[2] Univ Southern Mississippi, Sch Polymer Sci & Engn, Hattiesburg, MS 39406 USA
来源
ADVANCED NANOBIOMED RESEARCH | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
biomaterials; drug delivery; nanofabrication; polymers; self-assembly; DISPERSION POLYMERIZATION; GIANT VESICLES; IN-SITU; NANOPARTICLE SIZE; FLOW LITHOGRAPHY; DRUG-DELIVERY; NANO-OBJECTS; SHAPE; PARTICLES; SOFT;
D O I
10.1002/anbr.202100087
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The size and shape of polymer materials is becoming an increasingly important property in accessing new functions and applications of nano-/microparticles in many scientific fields. New synthetic methods have allowed unprecedented capability for the facile fabrication of anisotropic and shape-defined nanomaterials. Bottom-up approaches including: emulsion polymerization techniques, amphiphile self-assembly, and polymerization-induced self-assembly, can lead to polymer particles with precise dimensions in the nanoscale. Top-down methods such as lithographic templating, and 3D printing, have increased the access to unique particle shapes. In this review, these recent developments are appraised and contrasted, with future research directions providing that focus on biomedical applications. Finally, the opportunity available for synergistic combinations of top-down and bottom-up fabrication approaches in realizing previously unattainable architectures and material properties is highlighted.
引用
收藏
页数:14
相关论文
共 136 条
[1]   Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues [J].
Alcinesio, Alessandro ;
Meacock, Oliver J. ;
Allan, Rebecca G. ;
Monico, Carina ;
Restrepo Schild, Vanessa ;
Cazimoglu, Idil ;
Cornall, Matthew T. ;
Krishna Kumar, Ravinash ;
Bayley, Hagan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme [J].
Alghamdi, Majed ;
Chierchini, Filippo ;
Eigel, Dimitri ;
Taplan, Christian ;
Miles, Thomas ;
Pette, Dagmar ;
Welzel, Petra B. ;
Werner, Carsten ;
Wang, Wenxin ;
Neto, Catia ;
Gumbleton, Mark ;
Ben Newland .
NANOSCALE ADVANCES, 2020, 2 (10) :4498-4509
[3]  
Amodel E. M., 2017, PROG RETINAL EYE RES, V57, P134
[4]   Life science nanoarchitectonics at interfaces [J].
Ariga, Katsuhiko ;
Tsai, Kun-Che ;
Shrestha, Lok Kumar ;
Hsu, Shan-hui .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (03) :1018-1032
[5]   Role of nanoparticle size, shape and surface chemistry in oral drug delivery [J].
Banerjee, Amrita ;
Qi, Jianping ;
Gogoi, Rohan ;
Wong, Jessica ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2016, 238 :176-185
[6]   Modulation of Immune Responses by Particle Size and Shape [J].
Baranov, Maksim V. ;
Kumar, Manoj ;
Sacanna, Stefano ;
Thutupalli, Shashi ;
van den Bogaart, Geert .
FRONTIERS IN IMMUNOLOGY, 2021, 11
[7]   Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration [J].
Blanazs, A. ;
Ryan, A. J. ;
Armes, S. P. .
MACROMOLECULES, 2012, 45 (12) :5099-5107
[8]   Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? [J].
Blanazs, Adam ;
Madsen, Jeppe ;
Battaglia, Giuseppe ;
Ryan, Anthony J. ;
Armes, Steven P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16581-16587
[9]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[10]   Light-activated communication in synthetic tissues [J].
Booth, Michael J. ;
Schild, Vanessa Restrepo ;
Graham, Alexander D. ;
Olof, Sam N. ;
Bayley, Hagan .
SCIENCE ADVANCES, 2016, 2 (04)