On existence of a universal function for L p [0,1] with p ∈(0,1)

被引:1
作者
Grigoryan, M. G. [1 ]
Sargsyan, A. A. [2 ]
机构
[1] Yerevan State Univ, Yerevan, Armenia
[2] Synchrotron Res Inst CANDLE, Yerevan, Armenia
关键词
universal function; Fourier coefficient; Walsh system; convergence in a metric; WALSH-SERIES; SYSTEM;
D O I
10.1134/S0037446616050086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for every number p a (0, 1), there is g a L (1)[0, 1] (a universal function) that has monotone coefficients c (k) (g) and the Fourier-Walsh series convergent to g (in the norm of L (1)[0, 1]) such that, for every f a L (p) [0, 1], there are numbers delta (k) = +/- 1, 0 and an increasing sequence of positive integers N (q) such that the series a (k=0) (+a) delta (k) c (k) (g)W (k) (with {W (k) } theWalsh system) and the subsequence , alpha a (-1, 0), of its Cesaro means converge to f in the metric of L (p) [0, 1].
引用
收藏
页码:796 / 808
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1952, Journal d'Analyse Mathematique, DOI DOI 10.1007/BF02786968
[2]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473
[3]  
Episkoposian S. A., 2003, J CONTEMP MATH ANAL, V38, P25
[4]   On the existence of universal series by trigonometric system [J].
Episkoposian, SA .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 230 (01) :169-183
[5]   On convergence of negative order Cesaro means of the Fourier-Walsh series in L p (p > 1) metrics [J].
Galoyan, L. N. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (03) :134-147
[6]   On Walsh series with monotone coefficients [J].
Gevorkyan, GG ;
Navasardyan, KA .
IZVESTIYA MATHEMATICS, 1999, 63 (01) :37-55
[7]  
Golubov B. I., 1987, Walsh Series and Transforms. Theory and Applications
[8]  
Grigorian M. G., 2002, IZV NATS AKAD NAUK A, V37, P3
[9]  
Grigorian MG, 1999, STUD MATH, V134, P207
[10]  
GRIGORIAN MG, 1999, E J APPROX, V5, P483