Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)

被引:246
作者
Dai, Zhengjia [1 ]
Yan, Chaogan [1 ]
Wang, Zhiqun [2 ]
Wang, Jinhui [1 ]
Xia, Mingrui [1 ]
Li, Kuncheng [2 ,3 ]
He, Yong [1 ]
机构
[1] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[2] Capital Med Univ, Xuanwu Hosp, Dept Radiol, Beijing, Peoples R China
[3] Capital Med Univ, Minist Educ, Key Lab Neurodegenerat Dis, Beijing, Peoples R China
基金
北京市自然科学基金;
关键词
Alzheimer's disease; MRI; fMRI; ALFF; ReHo; Connectivity; Network; Connectome; VOXEL-BASED MORPHOMETRY; GRAY-MATTER LOSS; RESTING-STATE; FUNCTIONAL CONNECTIVITY; HUMAN BRAIN; PATTERN-CLASSIFICATION; WHITE-MATTER; MRI; DIAGNOSIS; NETWORKS;
D O I
10.1016/j.neuroimage.2011.10.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Increasing attention has recently been directed to the applications of pattern recognition and brain imaging techniques in the effective and accurate diagnosis of Alzheimer's disease (AD). However, most of the existing research focuses on the use of single-modal (e.g., structural or functional MRI) or single-level (e.g., brain local or connectivity metrics) biomarkers for the diagnosis of AD. In this study, we propose a methodological framework, called multi-modal imaging and multi-level characteristics with multi-classifier (M3), to discriminate patients with AD from healthy controls. This approach involved data analysis from two imaging modalities: structural MRI, which was used to measure regional gray matter volume, and resting-state functional MRI, which was used to measure three different levels of functional characteristics, including the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and regional functional connectivity strength (RFCS). For each metric, we computed the values of ninety regions of interest derived from a prior atlas, which were then further trained using a multi-classifier based on four maximum uncertainty linear discriminant analysis base classifiers. The performance of this method was evaluated using leave-one-out cross-validation. Applying the M3 approach to the dataset containing 16 AD patients and 22 healthy controls led to a classification accuracy of 89.47% with a sensitivity of 87.50% and a specificity of 90.91%. Further analysis revealed that the most discriminative features for classification are predominantly involved in several default-mode (medial frontal gyrus, posterior cingulate gyrus, hippocampus and parahippocampal gyrus), occipital (fusiform gyrus, inferior and middle occipital gyrus) and subcortical (amygdale and pallidum of lenticular nucleus) regions. Thus, the M3 method shows promising classification performance by incorporating information from different imaging modalities and different functional properties, and it has the potential to improve the clinical diagnosis and treatment evaluation of AD. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2187 / 2195
页数:9
相关论文
共 77 条
[1]   Reduced hippocampal functional connectivity in Alzheimer disease [J].
Allen, Greg ;
Barnard, Holly ;
McColl, Roderick ;
Hester, Andrea L. ;
Fields, Julie A. ;
Weiner, Myron F. ;
Ringe, Wendy K. ;
Lipton, Anne M. ;
Brooker, Matthew ;
McDonald, Elizabeth ;
Rubin, Craig D. ;
Cullum, C. Munro .
ARCHIVES OF NEUROLOGY, 2007, 64 (10) :1482-1487
[2]   3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects [J].
Apostolova, Liana G. ;
Hwang, Kristy S. ;
Andrawis, John P. ;
Green, Amity E. ;
Babakchanian, Sona ;
Morra, Jonathan H. ;
Cummings, Jeffrey L. ;
Toga, Arthur W. ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Jack, Clifford R., Jr. ;
Petersen, Ronald C. ;
Aisen, Paul S. ;
Jagust, William J. ;
Koeppe, Robert A. ;
Mathis, Chester A. ;
Weiner, Michael W. ;
Thompson, Paul M. .
NEUROBIOLOGY OF AGING, 2010, 31 (08) :1284-1303
[3]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[4]   In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease [J].
Baron, JC ;
Chételat, G ;
Desgranges, B ;
Perchey, G ;
Landeau, B ;
de la Sayette, V ;
Eustache, F .
NEUROIMAGE, 2001, 14 (02) :298-309
[5]   A novel model-free data analysis technique based on clustering in a mutual information space: application to resting-state fMRI [J].
Benjaminsson, Simon ;
Fransson, Peter ;
Lansner, Anders .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
[6]   Diagnostic value of quantitative EEG in Alzheimer's disease [J].
Bennys, K ;
Rondouin, G ;
Vergnes, C ;
Touchon, J .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2001, 31 (03) :153-160
[7]   Discrimination of Alzheimer's disease and normal aging by EEG data [J].
Besthorn, C ;
Zerfass, R ;
GeigerKabisch, C ;
Sattel, H ;
Daniel, S ;
SchreiterGasser, U ;
Forstl, H .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (02) :241-248
[8]   Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI [J].
Birn, RM ;
Diamond, JB ;
Smith, MA ;
Bandettini, PA .
NEUROIMAGE, 2006, 31 (04) :1536-1548
[9]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[10]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739