Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network

被引:8
|
作者
Wu, Xiao [1 ]
Zhang, Tinglin [1 ]
Zhang, Limei [2 ]
Qiao, Lishan [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng, Peoples R China
[2] Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
seizure prediction; successive variational mode decomposition; multiscale time-frequency analysis; BERT; intracranial EEG; FAULT-DIAGNOSIS; ENTROPY; LONG;
D O I
10.3389/fnins.2022.982541
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
As one of the most common neurological disorders, epilepsy causes great physical and psychological damage to the patients. The long-term recurrent and unprovoked seizures make the prediction necessary. In this paper, a novel approach for epileptic seizure prediction based on successive variational mode decomposition (SVMD) and transformers is proposed. SVMD is extended to multidimensional form for time-frequency analysis of multi-channel signals. It could adaptively extract common band-limited intrinsic modes among all channels on different time scales by solving a variational optimization problem. In the proposed seizure prediction method, data are first decomposed into multiple modes on different time scales by multivariate SVMD, and then, irrelevant modes are removed for preprocessing. Finally, power spectrum of denoised data is input to a pre-trained bidirectional encoder representations from transformers (BERTs) for prediction. The BERT could identify the mode information related to epileptic seizures in time-frequency domain. It shows fair prediction performance on an intracranial EEG dataset with the average sensitivity of 0.86 and FPR of 0.18/h.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals
    Liu, Xiang
    Wang, Juan
    Shang, Junliang
    Liu, Jinxing
    Dai, Lingyun
    Yuan, Shasha
    BRAIN SCIENCES, 2022, 12 (10)
  • [2] Empirical Mode Decomposition In Epileptic Seizure Prediction
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 275 - 280
  • [3] An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network
    Meng, Anbo
    Xie, Zhifeng
    Luo, Jianqiang
    Zeng, Ying
    Xu, Xuancong
    Li, Yidian
    Wu, Zhenbo
    Zhang, Zhan
    Zhu, Jianbin
    Xian, Zikang
    Li, Chen
    Yan, Baiping
    Yin, Hao
    ENERGY, 2023, 282
  • [4] Automatic Epileptic Seizure Detection based on Empirical Mode Decomposition and Deep Neural Network
    Daoud, Hisham G.
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018), 2018, : 182 - 186
  • [5] Detection of Epileptic Seizure Event in EEG Signals Using Variational Mode Decomposition and Mode Spectral Entropy
    Das, Priya
    Manikandan, M. Sabarimalai
    Ramkumar, Barathram
    2018 IEEE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (IEEE ICIIS), 2018, : 55 - 60
  • [6] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Yu, Zuyi
    Nie, Weiwei
    Zhou, Weidong
    Xu, Fangzhou
    Yuan, Shasha
    Leng, Yan
    Yuan, Qi
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (05): : 3462 - 3476
  • [7] Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network
    Zuyi Yu
    Weiwei Nie
    Weidong Zhou
    Fangzhou Xu
    Shasha Yuan
    Yan Leng
    Qi Yuan
    The Journal of Supercomputing, 2020, 76 : 3462 - 3476
  • [8] Epileptic Seizure Prediction Using Variational Mixture of Gaussians
    Zandi, Ali Shahidi
    Dumont, Guy A.
    Javidan, Manouchehr
    Tafreshi, Reza
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7549 - 7552
  • [9] Epileptic Seizure Prediction Using Convolutional Autoencoder Based Deep Learning
    Gozutok, Burak
    Ademoglu, Ahmet
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [10] Successive variational mode decomposition
    Nazari, Mojtaba
    Sakhaei, Sayed Mahmoud
    SIGNAL PROCESSING, 2020, 174