Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anomaly Detection

被引:2
|
作者
Akhriev, Albert [1 ]
Marecek, Jakub [1 ]
机构
[1] IBM Res Ireland, Dublin, Ireland
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019) | 2019年
关键词
autoencoder; incremental training; value-at-risk; thresholding; MATRIX FACTORIZATION; ROBUST; IMAGE; PCA;
D O I
10.1109/ISM46123.2019.00045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many real-world monitoring and surveillance applications require non-trivial anomaly detection to be run in the streaming model. We consider an incremental-learning approach, wherein a deep-autoencoding (DAE) model of what is normal is trained and used to detect anomalies at the same time. In the detection of anomalies, we utilise a novel thresholding mechanism, based on value at risk (VaR). We compare the resulting convolutional neural network (CNN) against a number of subspace methods and present results on changedetection.net.
引用
收藏
页码:208 / 211
页数:4
相关论文
共 50 条
  • [1] Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
    Ustek, Irem
    Arana-Catania, Miguel
    Farr, Alexander
    Petrunin, Ivan
    EARTH AND SPACE SCIENCE, 2024, 11 (11)
  • [2] Unsupervised network traffic anomaly detection with deep autoencoders
    Dutta, Vibekananda
    Pawlicki, Marek
    Kozik, Rafal
    Choras, Michal
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (06) : 912 - 925
  • [3] A CLOSER LOOK AT AUTOENCODERS FOR UNSUPERVISED ANOMALY DETECTION
    Oyedotun, Oyebade K.
    Aouada, Djamila
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3793 - 3797
  • [4] Anomaly Detection with Robust Deep Autoencoders
    Zhou, Chong
    Paffenroth, Randy C.
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 665 - 674
  • [5] Denoising Autoencoders for Unsupervised Anomaly Detection in Brain MRI
    Kascenas, Antanas
    Pugeault, Nicolas
    O'Neil, Alison Q.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 653 - 664
  • [6] Autoencoders for unsupervised anomaly detection in high energy physics
    Thorben Finke
    Michael Krämer
    Alessandro Morandini
    Alexander Mück
    Ivan Oleksiyuk
    Journal of High Energy Physics, 2021
  • [7] Autoencoders for unsupervised anomaly detection in high energy physics
    Finke, Thorben
    Kraemer, Michael
    Morandini, Alessandro
    Mueck, Alexander
    Oleksiyuk, Ivan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
  • [8] Deep Unsupervised Anomaly Detection
    Li, Tangqing
    Wang, Zheng
    Liu, Siying
    Lin, Wen-Yan
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3635 - 3644
  • [9] Unsupervised Spectrum Anomaly Detection With Distillation and Memory Enhanced Autoencoders
    Qi, Peihan
    Jiang, Tao
    Xu, Jiabo
    He, Jinyang
    Zheng, Shilian
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39361 - 39374
  • [10] Anomaly detection in a forensic timeline with deep autoencoders
    Studiawan, Hudan
    Sohel, Ferdous
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 63