On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space

被引:8
作者
Osilenker, B. P. [1 ]
机构
[1] Moscow State Univ Civil Engn, Moscow, Russia
关键词
discrete Sobolev space; orthogonal polynomial; Fourier series; linear summation method; Cesaro method; symmetric Gegenbauer-Sobolev polynomials; ASYMPTOTICS;
D O I
10.1134/S0037446615020135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under study are the discrete Sobolev spaces with the inner product Some results are presented on linear summation methods for Fourier series in orthonormal polynomials of discrete Sobolev spaces.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条
[31]   THE PELCZYNSKI AND DUNFORD-PETTIS PROPERTIES OF THE SPACE OF UNIFORM CONVERGENT FOURIER SERIES WITH RESPECT TO ORTHOGONAL POLYNOMIALS [J].
Obermaier, J. .
COLLOQUIUM MATHEMATICUM, 2021, 164 (01) :1-9
[32]   Multivariable orthogonal polynomials and coupling coefficients for discrete series representations [J].
Rosengren, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (02) :233-272
[33]   Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series [J].
Diaz-Gonzalez, Abel ;
Marcellan, Francisco ;
Pijeira-Cabrera, Hector ;
Urbina, Wilfredo .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) :571-598
[35]   A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product [J].
BujarXh Fejzullahu ;
Francisco Marcellán .
Journal of Inequalities and Applications, 2010
[36]   Convergence of the Fourier Series in Meixner-Sobolev Polynomials and Approximation Properties of Its Partial Sums [J].
Gadzhimirzaev, R. M. .
MATHEMATICAL NOTES, 2024, 115 (3-4) :301-316
[37]   Asymptotic Properties of Orthogonal Polynomials with Respect to a Non-discrete Jacobi-Sobolev Inner Product [J].
Bujar Xh. Fejzullahu ;
Francisco Marcellán .
Acta Applicandae Mathematicae, 2010, 110 :1309-1320
[38]   Asymptotic Properties of Orthogonal Polynomials with Respect to a Non-discrete Jacobi-Sobolev Inner Product [J].
Fejzullahu, Bujar Xh. ;
Marcellan, Francisco .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) :1309-1320
[39]   The Reproducing Kernel Structure Arising from a Combination of Continuous and Discrete Orthogonal Polynomials into Fourier Systems [J].
Luis Daniel Abreu .
Constructive Approximation, 2008, 28 :219-235
[40]   Approximation properties of de la Valle<acute accent>e Poussin means of partial Fourier series in Meixner-Sobolev polynomials [J].
Gadzhimirzaev, R. M. .
SBORNIK MATHEMATICS, 2024, 215 (09) :1202-1223