On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space

被引:10
作者
Osilenker, B. P. [1 ]
机构
[1] Moscow State Univ Civil Engn, Moscow, Russia
关键词
discrete Sobolev space; orthogonal polynomial; Fourier series; linear summation method; Cesaro method; symmetric Gegenbauer-Sobolev polynomials; ASYMPTOTICS;
D O I
10.1134/S0037446615020135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under study are the discrete Sobolev spaces with the inner product Some results are presented on linear summation methods for Fourier series in orthonormal polynomials of discrete Sobolev spaces.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条
[21]   On the Approximative Properties of Fourier Series in Laguerre-Sobolev Polynomials [J].
Gadzhimirzaev, R. M. .
SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (01) :30-43
[22]   Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials [J].
Manas-Manas, Juan F. ;
Marcellan, Francisco ;
Moreno-Balcazar, Juan J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 :341-353
[23]   Sobolev orthogonal polynomials and spectral methods in boundary value problems [J].
Fernandez, Lidia ;
Marcellan, Francisco ;
Perez, Teresa E. ;
Pinar, Miguel A. .
APPLIED NUMERICAL MATHEMATICS, 2024, 200 :254-272
[24]   A Cohen type inequality for Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product [J].
Fejzullahu, Bujar Xh. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) :240-254
[25]   The Fourier extension method and discrete orthogonal polynomials on an arc of the circle [J].
Geronimo, J. S. ;
Liechty, Karl .
ADVANCES IN MATHEMATICS, 2020, 365
[26]   On convergence of Fourier series in discrete Jacobi-Sobolev spaces [J].
Ciaurri, O. ;
Ceniceros, J. Minguez ;
Rodriguez, J. M. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (09) :703-720
[27]   On Fourier series of a discrete Jacobi-Sobolev inner product [J].
Marcellán, F ;
Osilenker, BP ;
Rocha, IA .
JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) :1-22
[28]   ON CONVERGENCE AND ABSOLUTE CONVERGENCE OF FOURIER SERIES WITH RESPECT TO ORTHOGONAL POLYNOMIALS [J].
Obermaier, Josef .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 7 (04) :1-10
[29]   Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros [J].
Manas-Manas, Juan F. ;
Marcellan, Francisco ;
Moreno-Balcazar, Juan J. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 :612-618
[30]   Differential operator for discrete Gegenbauer-Sobolev orthogonal polynomials: Eigenvalues and asymptotics [J].
Littlejohn, Lance L. ;
Manas-Manas, Juan F. ;
Moreno-Balcazar, Juan J. ;
Wellman, Richard .
JOURNAL OF APPROXIMATION THEORY, 2018, 230 :32-49