Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction

被引:21
作者
Xiao, Yi-Hong [1 ,3 ]
Zhang, Yu-Xiang [4 ]
Zhai, Rui [1 ]
Gu, Zhi-Gang [1 ,2 ,3 ]
Zhang, Jian [1 ,3 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350108, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic framework; helical nanoarrays; CO2; electroreduction; METAL-ORGANIC FRAMEWORKS; ELECTROCHEMICAL REDUCTION; GROWTH; ELECTROCATALYSIS; CONVERSION; NANOSHEETS; NANOWIRES; ACETATE; FORMATE; DRIVEN;
D O I
10.1007/s40843-021-1835-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, metal-organic frameworks (MOFs) have been extensively investigated as electrocatalysts due to their highly efficient electroreduction of CO2. Herein, the electrocatalytic CO2 reduction reaction was investigated by growing helical Cu-porphyrinic MOF Cu meso-tetra(4-carboxyphenyl)porphyrin (TCPP) on Cu(OH)(2) nanoarrays (H-CuTCPP@Cu(OH)(2)) using a sacrificial template method. The electrocatalytic results showed that the H-CuTCPP@Cu(OH)(2) nanoarrays exhibited a high acetic acid Faradaic efficiency (FE) of 26.1% at -1.6 V vs. Ag/Ag+, which is much higher than the value of 19.8% obtained for non-helical CuTCPP@Cu(OH)(2) (nH-CuTCPP@Cu(OH)(2)). The higher efficiency may be because space was more effectively utilized in the helical MOF nanoarrays, resulting in a greater number of active catalytic sites. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra showed that the H-CuTCPP@Cu(OH)(2) nanoarrays have much stronger CO linear adsorption, indicating a better selectivity of acetic acid than that of nH-CuTCPP@Cu(OH)(2). In this study, we develop new helical nanomaterials and propose a new route to enhance the reduction of CO2.
引用
收藏
页码:1269 / 1275
页数:7
相关论文
共 61 条
  • [31] VEBLEN DR, 1983, AM MINERAL, V68, P790
  • [32] In situ DRIFT'S study of CO coupling to dimethyl oxalate over structured Al-fiber@ns-AlOOH@Pd catalyst
    Wang, Chunzheng
    Chen, Pengjing
    Li, Yakun
    Zhao, Guofeng
    Liu, Ye
    Lu, Yong
    [J]. JOURNAL OF CATALYSIS, 2016, 344 : 173 - 183
  • [33] Electrocatalysis for CO2 conversion: from fundamentals to value-added products
    Wang, Genxiang
    Chen, Junxiang
    Ding, Yichun
    Cai, Pingwei
    Yi, Luocai
    Li, Yan
    Tu, Chaoyang
    Hou, Yang
    Wen, Zhenhai
    Dai, Liming
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (08) : 4993 - 5061
  • [34] Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal-Nitrogen Active Sites**
    Wang, Xinyue
    Sang, Xiahan
    Dong, Chung-Li
    Yao, Siyu
    Shuai, Ling
    Lu, Jianguo
    Yang, Bin
    Li, Zhongjian
    Lei, Lecheng
    Qiu, Ming
    Dai, Liming
    Hou, Yang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) : 11959 - 11965
  • [35] Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO2 Reduction
    Wang, Xinyue
    Wang, Yu
    Sang, Xiahan
    Zheng, Wanzhen
    Zhang, Shihan
    Shuai, Ling
    Yang, Bin
    Li, Zhongjian
    Chen, Jianmeng
    Lei, Lecheng
    Adli, Nadia Mohd
    Leung, Michael K. H.
    Qiu, Ming
    Wu, Gang
    Hou, Yang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (08) : 4192 - 4198
  • [36] Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites
    Wang, Xue
    Wang, Ziyun
    Zhuang, Tao-Tao
    Dinh, Cao-Thang
    Li, Jun
    Nam, Dae-Hyun
    Li, Fengwang
    Huang, Chun-Wei
    Tan, Chih-Shan
    Chen, Zitao
    Chi, Miaofang
    Gabardo, Christine M.
    Seifitokaldani, Ali
    Todorovic, Petar
    Proppe, Andrew
    Pang, Yuanjie
    Kirmani, Ahmad R.
    Wang, Yuhang
    Ip, Alexander H.
    Richter, Lee J.
    Scheffel, Benjamin
    Xu, Aoni
    Lo, Shen-Chuan
    Kelley, Shana O.
    Sinton, David
    Sargent, Edward H.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [37] Reticular chemistry in electrochemical carbon dioxide reduction
    Wang, Yanfang
    Li, Yuexiang
    Wang, Zhenyu
    Allan, Phoebe
    Zhang, Fucai
    Lu, Zhouguang
    [J]. SCIENCE CHINA-MATERIALS, 2020, 63 (07) : 1113 - 1141
  • [38] Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction
    Wang, Yifei
    Han, Peng
    Lv, Ximeng
    Zhang, Lijuan
    Zheng, Gengfeng
    [J]. JOULE, 2018, 2 (12) : 2551 - 2582
  • [39] Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges
    Wu, Hao Bin
    Lou, Xiong Wen
    [J]. SCIENCE ADVANCES, 2017, 3 (12):
  • [40] Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction
    Wu, Jian-Xiang
    Hou, Shu-Zhen
    Zhang, Xiang-Da
    Xu, Ming
    Yang, Hua-Fei
    Cao, Pei-Sheng
    Gu, Zhi-Yuan
    [J]. CHEMICAL SCIENCE, 2019, 10 (07) : 2199 - 2205