Multi-generational evaluation of genetic diversity and parentage in captive southern pygmy perch (Nannoperca australis)

被引:10
作者
Attard, Catherine R. M. [1 ]
Brauer, Chris J. [1 ]
Van Zoelen, Jacob D. [1 ]
Sasaki, Minami [1 ]
Hammer, Michael P. [2 ]
Morrison, Leslie [1 ]
Harris, James O. [1 ]
Moller, Luciana M. [1 ]
Beheregaray, Luciano B. [1 ]
机构
[1] Flinders Univ S Australia, Sch Biol Sci, Adelaide, SA 5042, Australia
[2] Museum & Art Gallery Northern Terr, Darwin, NT 0801, Australia
基金
澳大利亚研究理事会;
关键词
Restoration genetics; Pedigree; Kinship; Relatedness; Fish; Biodiversity extinction; BREEDING PROGRAMS; CONSERVATION; SIZE;
D O I
10.1007/s10592-016-0873-y
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Maintaining genetic diversity within captive breeding populations is a key challenge for conservation managers. We applied a multi-generational genetic approach to the captive breeding program of an endangered Australian freshwater fish, the southern pygmy perch (Nannoperca australis). During previous work, fish from the lower Murray-Darling Basin were rescued before drought exacerbated by irrigation resulted in local extinction. This endemic lineage of the species was captive-bred in genetically designed groups, and equal numbers of F1 individuals were reintroduced to the wild with the return of favourable habitat. Here, we implemented a contingency plan by continuing the genetic-based captive breeding in the event that a self-sustaining wild population was not established. F1 individuals were available as putative breeders from the subset of groups that produced an excess of fish in the original restoration program. We used microsatellite-based parentage analyses of these F1 fish to form breeding groups that minimized inbreeding. We assessed their subsequent parental contribution to F2 individuals and the maintenance of genetic diversity. We found skewed parental contribution to F2 individuals, yet minimal loss of genetic diversity from their parents. However, the diversity was substantially less than that of the original rescued population. We attribute this to the unavoidable use of F1 individuals from a limited number of the original breeding groups. Alternative genetic sources for supplementation or reintroduction should be assessed to determine their suitability. The genetic fate of the captive-bred population highlights the strong need to integrate DNA-based tools for monitoring and adaptive management of captive breeding programs.
引用
收藏
页码:1469 / 1473
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 2007, Fishes of the Murray-Darling basin: An introductory guide
[2]   A novel holistic framework for genetic-based captive-breeding and reintroduction programs [J].
Attard, C. R. M. ;
Moller, L. M. ;
Sasaki, M. ;
Hammer, M. P. ;
Bice, C. M. ;
Brauer, C. J. ;
Carvalho, D. C. ;
Harris, J. O. ;
Beheregaray, L. B. .
CONSERVATION BIOLOGY, 2016, 30 (05) :1060-1069
[3]   Catchment-Scale Conservation Units Identified for the Threatened Yarra Pygmy Perch (Nannoperca obscura) in Highly Modified River Systems [J].
Brauer, Chris J. ;
Unmack, Peter J. ;
Hammer, Michael P. ;
Adams, Mark ;
Beheregaray, Luciano B. .
PLOS ONE, 2013, 8 (12)
[4]   Factors influencing effective population size in commercial populations of gilthead seabream, Sparus aurata [J].
Brown, RC ;
Woolliams, JA ;
McAndrew, BJ .
AQUACULTURE, 2005, 247 (1-4) :219-225
[5]   Isolation and PCR-multiplex genotyping of 18 novel microsatellite markers for the threatened southern pygmy perch (Nannoperca australis) [J].
Carvalho, Daniel C. ;
Hammer, Michael P. ;
Beheregaray, Luciano B. .
CONSERVATION GENETICS RESOURCES, 2012, 4 (01) :15-17
[6]   Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray-Darling Basin, Australia [J].
Cole, Theresa L. ;
Hammer, Michael P. ;
Unmack, Peter J. ;
Teske, Peter R. ;
Brauer, Chris J. ;
Adams, Mark ;
Beheregaray, Luciano B. .
CONSERVATION GENETICS, 2016, 17 (06) :1377-1391
[7]   PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation [J].
Duchesne, P ;
Godbout, MH ;
Bernatchez, L .
MOLECULAR ECOLOGY NOTES, 2002, 2 (02) :191-193
[8]  
Frankham R., 2010, Introduction to Conservation Genetics
[9]   Genetic adaptation to captivity in species conservation programs [J].
Frankham, Richard .
MOLECULAR ECOLOGY, 2008, 17 (01) :325-333
[10]   How well can captive breeding programs conserve biodiversity? A review of salmonids [J].
Fraser, Dylan J. .
EVOLUTIONARY APPLICATIONS, 2008, 1 (04) :535-586