On the eigenvalues of Aα-matrix of graphs

被引:16
|
作者
Liu, Shuting [1 ]
Das, Kinkar Chandra [2 ]
Shu, Jinlong [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[3] East China Normal Univ, Dept Comp Sci & Technol, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Graph; The kth largest eigenvalue of A(alpha)(G); A(alpha)-spectral radius; Degree; SPECTRAL-RADIUS; A(ALPHA)-SPECTRA; CONJECTURES;
D O I
10.1016/j.disc.2020.111917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real alpha is an element of [0, 1], Nikiforov defined the matrix A(alpha)(G) as A(alpha)(G) = alpha D(G)+/- (1 - alpha)A(G). In this paper, we study the kth largest eigenvalue of A(alpha) -matrix of graphs, where 1 <= k <= n. We present several upper and lower bounds on the kth largest eigenvalue of A(alpha-)matrix and characterize the extremal graphs corresponding to some of these obtained bounds. As applications, some bounds we obtained can generalize some known results on adjacency matrix and signless Laplacian matrix of graphs. Finally, we solve a problem proposed by Nikiforov (2017). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On the eigenvalues of Laplacian ABC-matrix of graphs
    Rather, Bilal Ahmad
    Ganie, Hilal A.
    Li, Xueliang
    QUAESTIONES MATHEMATICAE, 2023, 46 (11) : 2403 - 2419
  • [2] On eigenvalues of the reciprocal distance signless Laplacian matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Alizadeh, Yaser
    Pirzada, Shariefuddin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [3] On the distribution of eigenvalues of the reciprocal distance Laplacian matrix of graphs
    Pirzada, S.
    Khan, Saleem
    FILOMAT, 2023, 37 (23) : 7973 - 7980
  • [4] On the eigenvalues of the distance matrix of graphs with given number of pendant vertices
    Pirzada, Shariefuddin
    Mushtaq, Ummer
    Shang, Yilun
    DISCRETE MATHEMATICS LETTERS, 2024, 14 : 50 - 57
  • [5] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [6] Eigenvalues, multiplicities and graphs
    Johnson, Charles R.
    Duarte, Antonio Leal
    Saiago, Carlos M.
    Sher, David
    ALGEBRA AND ITS APPLICATIONS, 2006, 419 : 167 - +
  • [7] On the Aα-Eigenvalues of Signed Graphs
    Pasten, Germain
    Rojo, Oscar
    Medina, Luis
    MATHEMATICS, 2021, 9 (16)
  • [8] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02) : 258 - 270
  • [9] On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs
    Das, Kinkar Chandra
    Mojallal, Seyed Ahmad
    Sun, Shaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 : 175 - 194
  • [10] On graphs with multiple eigenvalues
    Rowlinson, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) : 75 - 85