Synchronization of Stochastic Complex Networks Using Nonlinear Optimal Control

被引:0
作者
Liu, Ziqian [1 ]
Wang, Qunjing [2 ]
Li, Guoli [2 ]
机构
[1] SUNY Maritime Coll, Dept Engn, Throggs Neck, NY 10465 USA
[2] Anhui Univ, Dept Elect Engn, Hefei 230039, Anhui, Peoples R China
来源
PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA) | 2016年
关键词
Synchronization; stochastic complex networks; nonlinear optimal control; noise attenuation; Lyapunov technique; Hamilton-Jacobi-Isaacs (HJI) equation; DYNAMICAL NETWORKS; ADAPTIVE SYNCHRONIZATION; GLOBAL SYNCHRONIZATION; STABILITY; TOPOLOGY; CRITERIA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a theoretical design of how an optimal synchronization is achieved for stochastic complex networks. The methodology is developed to guarantee that all nodes of a complex network influenced by uncertain noises synchronize with the target node. The formulation of a decentralized optimal controller is rigorously derived by using Lyapunov technique and the associated Hamilton-Jacobi-Isaacs (HJI) equation for a unified model of complex networks. To verify the analytical results, a numerical example is given to demonstrate the effectiveness of the proposed approach, which is simple and easy to implement in reality.
引用
收藏
页码:1863 / 1871
页数:9
相关论文
共 33 条
  • [1] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [2] Basa T. rand, 1995, H OPTIMAL CONTROL RE
  • [3] Stability of stochastic delay neural networks
    Blythe, S
    Mao, XR
    Liao, XX
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2001, 338 (04): : 481 - 495
  • [4] Chaos synchronization in complex networks
    Chen, Maoyin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (05) : 1335 - 1346
  • [5] Synchronisation analysis and impulsive control of complex networks with coupling delays
    Dai, Y.
    Cai, Y.
    Xu, X.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (09) : 1167 - 1174
  • [6] Stabilization of stochastic nonlinear systems driven by noise of unknown covariance
    Deng, H.
    Krstić, M.
    Williams, R.J.
    [J]. 1600, Institute of Electrical and Electronics Engineers Inc. (46):
  • [7] Disconnected Synchronized Regions of Complex Dynamical Networks
    Duan, Zhisheng
    Chen, Guanrong
    Huang, Lin
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) : 845 - 849
  • [8] New criteria for synchronization stability of general complex dynamical networks with coupling delays
    Gao, Huijun
    Lam, James
    Chen, Guanrong
    [J]. PHYSICS LETTERS A, 2006, 360 (02) : 263 - 273
  • [9] Hardy G., 1989, Inequalities, V2nd
  • [10] Global adaptive synchronization of complex networks with nonlinear delay coupling interconnections
    Hua, Chang-Chun
    Wang, Qing-Guo
    Guan, Xinping
    [J]. PHYSICS LETTERS A, 2007, 368 (3-4) : 281 - 288