Assessing the effect of model missspecifications on parameter estimates in structural equation models

被引:46
|
作者
Yuan, KH [1 ]
Marshall, LL
Bentler, PM
机构
[1] Univ Notre Dame, Dept Psychol, Lab Social Res, Notre Dame, IN 46556 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
来源
SOCIOLOGICAL METHODOLOGY, VOL 33 | 2003年 / 33卷
关键词
D O I
10.1111/j.0081-1750.2003.00132.x
中图分类号
C91 [社会学];
学科分类号
030301 ; 1204 ;
摘要
Model misspecifications may have a systematic effect on parameters, causing biases in their estimates. In the application of structural equation models, every interesting model is fallible. When simultaneously evaluating a model, it is of interest to study whether all parameters are affected by a misspecification. This paper provides three procedures for evaluating such an effect: (1) analyzing the path, (2) using a functional relationship, and (3) using a significance test. Analyzing the path is illustrated through a confirmatory factor model. This method is ad hoc but intuitive. A more rigorous approach is built upon the concept of orthogonality of two sets of parameters. When parameter a is orthogonal to parameter b, omitting parameter b. will not affect the estimation of parameter a. The functional relationship of two sets of parameters is used to cheek their orthogonality. The distribution of the difference between estimates based on different models is obtained, which provides a Hausman-like way to check significant parameter differences that are due to biases. Examples illustrate that these procedures can provide valuable information on identifying parameter estimates that are systematically affected by a model misspecification.
引用
收藏
页码:241 / 265
页数:25
相关论文
共 50 条
  • [21] Modeling Misspecification as a Parameter in Bayesian Structural Equation Models
    Uanhoro, James Ohisei
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2024, 84 (02) : 245 - 270
  • [22] Parameter Uncertainty in Structural Equation Models: Confidence Sets and Fungible Estimates (vol 23, pg 635, 2018)
    Pek, Jolynn
    Wu, Hao
    PSYCHOLOGICAL METHODS, 2019, 24 (01) : 53 - 53
  • [23] The Effect of Collinearity on Parameter Estimates in Nonlinear Mixed Effect Models
    Peter L. Bonate
    Pharmaceutical Research, 1999, 16 : 709 - 717
  • [24] The effect of collinearity on parameter estimates in nonlinear mixed effect models
    Bonate, PL
    PHARMACEUTICAL RESEARCH, 1999, 16 (05) : 709 - 717
  • [25] Output uncertainty of dynamic growth models: Effect of uncertain parameter estimates on model reliability
    Anane, Emmanuel
    Lopez, Diana C.
    Barz, Tilman
    Sin, Gurkan
    Gernaey, Krist, V
    Neubauer, Peter
    Bournazou, Mariano Nicolas Cruz
    BIOCHEMICAL ENGINEERING JOURNAL, 2019, 150
  • [26] Assessing Model Similarity in Structural Equation Modeling
    Lai, Keke
    Green, Samuel B.
    Levy, Roy
    Reichenberg, Ray E.
    Xu, Yuning
    Thompson, Marilyn S.
    Yel, Nedim
    Eggum-Wilkens, Natalie D.
    Kunze, Katie L.
    Iida, Masumi
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (04) : 491 - 506
  • [27] Baseline age effect on parameter estimates in Cox models
    Chalise, Prabhakar
    Chicken, Eric
    McGee, Daniel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (12) : 1767 - 1774
  • [28] COMPUTATION OF MAXIMUM LIKELIHOOD ESTIMATES IN CYCLIC STRUCTURAL EQUATION MODELS
    Drton, Mathias
    Fox, Christopher
    Wang, Y. Samuel
    ANNALS OF STATISTICS, 2019, 47 (02): : 663 - 690
  • [29] THE ROBUSTNESS OF LISREL ESTIMATES IN STRUCTURAL EQUATION MODELS WITH CATEGORICAL VARIABLES
    ETHINGTON, CA
    JOURNAL OF EXPERIMENTAL EDUCATION, 1987, 55 (02): : 80 - 88
  • [30] blavaan: Bayesian Structural Equation Models via Parameter Expansion
    Merkle, Edgar C.
    Rosseel, Yves
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (04): : 1 - 30