APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

被引:0
作者
Deng, Zhen-Guo [1 ]
Wu, Guo-Cheng [2 ,3 ]
机构
[1] Guangxi Univ, Sch Math & Informat Sci, Nanning 530004, Peoples R China
[2] Key Lab Numer Simulat Sichuan Prov, Neijiang 641112, Sichuan, Peoples R China
[3] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang 641112, Sichuan, Peoples R China
来源
ROMANIAN JOURNAL OF PHYSICS | 2011年 / 56卷 / 7-8期
关键词
Modified Riemann-Liouville derivative; Fractional Variational Iteration Method; Fractional differential equations; NONDIFFERENTIABLE FUNCTIONS; SERIES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional differential equations have been caught much attention during the past decades. In this study, iteration formulae of a fractional differential equation with uncertainty are proposed and the approximate solutions for a simple case are derived via a fractional variational iteration method.
引用
收藏
页码:868 / 872
页数:5
相关论文
共 15 条
[1]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[2]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 2010, COMMUN FRAC CALC
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[7]   Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of nondifferentiable functions [J].
Jumarie, Guy .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :969-987
[8]   Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2009, 22 (11) :1659-1664
[9]  
Kiryakova V., 1994, Generalized fractional calculus and applications, V301
[10]   Basic theory of fractional differential equations [J].
Lakshmikantham, V. ;
Vatsala, A. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2677-2682