Fully Finite Element Adaptive AMG Method for Time-Space Caputo-Riesz Fractional Diffusion Equations

被引:11
作者
Yue, X. Q. [1 ]
Bu, W. P. [1 ]
Shu, S. [2 ]
Liu, M. H. [1 ]
Wang, S. [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo-Riesz fractional diffusion equation; fully discrete space-time FE scheme; condition number estimation; algorithmic complexity; adaptive AMG method; SPECTRAL-COLLOCATION METHOD; DIFFERENTIAL-EQUATIONS; CONVERGENCE ANALYSIS; NUMERICAL-METHOD; MULTIGRID METHOD; PRECONDITIONERS; APPROXIMATIONS; SCHEME;
D O I
10.4208/aamm.OA-2018-0046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper aims to establish a fully discrete finite element (FE) scheme and provide cost-effective solutions for one-dimensional time-space Caputo-Riesz fractional diffusion equations on a bounded domain W. Firstly, we construct a fully discrete scheme of the linear FE method in both temporal and spatial directions, derive many characterizations on the coefficient matrix and numerically verify that the fully discrete FE approximation possesses the saturation error order under L-2 (Omega) norm. Secondly, we theoretically prove the estimation 1 + O(tau(alpha)h(-2 beta)) on the condition number of the coefficient matrix, in which tau and h respectively denote time and space step sizes. Finally, on the grounds of the estimation and fast Fourier transform, we develop and analyze an adaptive algebraic multigrid (AMG) method with low algorithmic complexity, reveal a reference formula to measure the strength-of-connection tolerance which severely affect the robustness of AMG methods in handling fractional diffusion equations, and illustrate the well robustness and high efficiency of the proposed algorithm compared with the classical AMG, conjugate gradient and Jacobi iterative methods.
引用
收藏
页码:1103 / 1125
页数:23
相关论文
共 41 条
  • [1] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Bu, Weiping
    Xiao, Aiguo
    Zeng, Wei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 422 - 441
  • [2] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
  • [3] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38
  • [4] AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS
    Burrage, Kevin
    Hale, Nicholas
    Kay, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) : A2145 - A2172
  • [5] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [6] MULTILEVEL METHODS FOR NONUNIFORMLY ELLIPTIC OPERATORS AND FRACTIONAL DIFFUSION
    Chen, Long
    Nochetto, Ricardo H.
    Otarola, Enrique
    Salgado, Abner J.
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (302) : 2583 - 2607
  • [7] CONVERGENCE ANALYSIS OF A MULTIGRID METHOD FOR A NONLOCAL MODEL
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (03) : 869 - 890
  • [8] Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients
    Ding, Zhiqing
    Xiao, Aiguo
    Li, Min
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1905 - 1914
  • [9] Spectral analysis and structure preserving preconditioners for fractional diffusion equations
    Donatelli, Marco
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 262 - 279
  • [10] Variational formulation for the stationary fractional advection dispersion equation
    Ervin, VJ
    Roop, JP
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) : 558 - 576