Fuzzy H∞ Synchronization for Chaotic Systems with Time-Varying Delay

被引:3
作者
Ahn, Choon Ki [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Automot Engn, Seoul 139743, South Korea
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2011年 / 66卷 / 3-4期
关键词
H-infinity Synchronization; Chaotic Systems; Takagi-Sugeno (TS) Fuzzy Model; Lyapunov-Krasovskii Theory; Time-Varying Delay; GUARANTEED COST CONTROL; ANTI-SYNCHRONIZATION; ADAPTIVE-CONTROL; LORENZ SYSTEMS; STABILIZATION; ATTRACTORS; DESIGN;
D O I
10.1515/zna-2011-3-403
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we propose a new H-infinity synchronization method for fuzzy model based chaotic systems with external disturbance and time-varying delay. Based on Lyapunov-Krasovskii theory, Takagi-Sugeno (TS) fuzzy model, and linear matrix inequality (LMI) approach, the H-infinity synchronization controller is presented to not only guarantee stable synchronization but also reduce the effect of external disturbance to an H-infinity norm constraint. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. A simulation study is presented to demonstrate the validity of the proposed approach.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 35 条
[1]   An H∞ approach to anti-synchronization for chaotic systems [J].
Ahn, Choon Ki .
PHYSICS LETTERS A, 2009, 373 (20) :1729-1733
[2]  
Bai E., 1997, PHYS REV E, V8, P51
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[5]   Guaranteed cost control of time-delay chaotic systems via memoryless state feedback [J].
Chen, Bing ;
Liu, Xiaoping ;
Tong, Shaocheng .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1683-1688
[6]  
Chen G., 1998, CHAOS ORDER
[7]   Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems [J].
Chen, Mou ;
Chen, Wen-hua .
CHAOS SOLITONS & FRACTALS, 2009, 41 (05) :2716-2724
[8]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
[9]  
Gahinet P., 1995, LMI Control Toolbox
[10]   A full delayed feedback controller design method for time-delay chaotic systems [J].
Guan, Xinping ;
Feng, Gang ;
Chen, Cailian ;
Chen, Guanrong .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (01) :36-42