STRANGE NONCHAOTIC ATTRACTORS IN A QUASIPERIODICALLY FORCED ARTICULATED MOORING TOWER MODEL

被引:4
作者
Shen, Yunzhu [1 ]
Zhang, Yongxiang [1 ]
Xu, Huidong [2 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Taiyuan Univ Technol, Coll Mech, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Strange Nonchaotic Attractors; Fractal; Piecewise Smooth System; The Largest Lyapunov Exponent; DYNAMICS; BIRTH; BIFURCATIONS; TRANSITION; COLLISION; ROUTE; SYNCHRONIZATION; SYSTEMS; MOTIONS; CRISES;
D O I
10.1142/S0218348X21502650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Strange nonchaotic attractors (SNAs) are investigated in a quasiperiodically forced piecewise smooth articulated mooring tower model. The smooth torus becomes wrinkled and loses its continuity considerably with the change of the control parameter. Then SNAs emerged due to the fractal property of wrinkled torus. SNAs are identified by the largest Lyapunov exponent, phase diagrams and phase sensitivity exponents. Fractal (strange) properties of SNAs are further explored by the rational approximation, power spectra and spectral distribution function, recurrence analysis, the largest Lyapunov exponent and its variance.
引用
收藏
页数:14
相关论文
共 52 条
  • [1] [Anonymous], 1991, J. Nonlinear Sci, DOI DOI 10.1007/BF02429848
  • [2] QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE
    BONDESON, A
    OTT, E
    ANTONSEN, TM
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2103 - 2106
  • [3] Global dynamics of a SD oscillator
    Chen, Hebai
    Llibre, Jaume
    Tang, Yilei
    [J]. NONLINEAR DYNAMICS, 2018, 91 (03) : 1755 - 1777
  • [4] INFINITE NUMBER OF PARAMETER REGIONS WITH FRACTAL NONCHAOTIC ATTRACTORS IN A PIECEWISE MAP
    Cheng, Tao
    Zhang, Yongxiang
    Shen, Yunzhu
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
  • [5] PHASE-RESETTING MAP AND THE DYNAMICS OF QUASI-PERIODICALLY FORCED BIOLOGICAL OSCILLATORS
    DING, MZ
    KELSO, JAS
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03): : 553 - 567
  • [6] Feudel U, 2016, STRANGE NONCHAOTIC A
  • [7] STRANGE ATTRACTORS THAT ARE NOT CHAOTIC
    GREBOGI, C
    OTT, E
    PELIKAN, S
    YORKE, JA
    [J]. PHYSICA D, 1984, 13 (1-2): : 261 - 268
  • [8] THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS
    HEAGY, JF
    HAMMEL, SM
    [J]. PHYSICA D, 1994, 70 (1-2): : 140 - 153
  • [9] Jäger TH, 2009, MEM AM MATH SOC, V201, P1
  • [10] A method for calculating the spectrum of Lyapunov exponents by local maps in non-smooth impact-vibrating systems
    Jin, L.
    Lu, Q. -S.
    Twizell, E. H.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2006, 298 (4-5) : 1019 - 1033