Variable step-size weighted zero-attracting sign algorithm

被引:14
作者
Chen, Xu [1 ]
Ni, Jingen [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Sign algorithm; Zero-attraction; Weighted l(1)-norm; Variable step-size; Mean-square deviation; Model-driven method; LMS ALGORITHM; REGULARIZATION;
D O I
10.1016/j.sigpro.2020.107542
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classical sign algorithm (SA) has been widely used in adaptive filters due to its low computational complexity and robustness against impulsive noise. In some applications the system to be estimated may be sparse. To improve the convergence rate of the SA for sparse system estimation, this paper incorporates a weighted l(1)-norm into the cost function built for the SA to develop a weighted zero-attracting SA (WZA-SA). Since the WZA-SA uses a constant step-size, it requires to take a tradeoff between fast convergence rate and small steady-state misalignment. To address this problem, we present a variable step-size (VSS) for the WZA-SA based on the mean-squared deviation (MSD) model-driven method. Simulation results are provided to verify its good performance for white or not highly correlated input signals. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Memory improved proportionate affine projection sign algorithm [J].
Albu, F. ;
Kwan, H. K. .
ELECTRONICS LETTERS, 2012, 48 (20) :1268-+
[2]  
Albu F, 2016, INT CONF COMM, P29, DOI 10.1109/ICComm.2016.7528277
[3]  
[Anonymous], 2017, ENTROPY SWITZ, DOI DOI 10.3390/E19080432
[4]   Diffusion LMS Over Multitask Networks [J].
Chen, Jie ;
Richard, Cedric ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (11) :2733-2748
[5]  
Chen YL, 2009, INT CONF ACOUST SPEE, P3125, DOI 10.1109/ICASSP.2009.4960286
[6]   Proportionate normalized least-mean-squares adaptation in echo cancelers [J].
Duttweiler, DL .
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2000, 8 (05) :508-518
[7]   l0 Norm Constraint LMS Algorithm for Sparse System Identification [J].
Gu, Yuantao ;
Jin, Jian ;
Mei, Shunliang .
IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (09) :774-777
[8]   Variable regularization for normalized subband adaptive filter [J].
Jeong, Jae Jin ;
Koo, Keunhwi ;
Koo, Gyogwon ;
Kim, Sang Woo .
SIGNAL PROCESSING, 2014, 104 :432-436
[9]   Model-driven online parameter adjustment for zero-attracting LMS [J].
Jin, Danqi ;
Chen, Jie ;
Richard, Cedric ;
Chen, Jingdong .
SIGNAL PROCESSING, 2018, 152 :373-383
[10]   A General Zero Attraction Proportionate Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification [J].
Li, Yingsong ;
Wang, Yanyan ;
Albu, Felix ;
Jiang, Jingshan .
SYMMETRY-BASEL, 2017, 9 (10)