Bosonic Mode and Impurity-Scattering in Monolayer Fe(Te,Se) High-Temperature Superconductors

被引:9
作者
Chen, Cheng [1 ]
Liu, Chaofei [1 ]
Liu, Yi [1 ]
Wang, Jian [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
pairing mechanism; thin films; high-temperature superconductivity; iron-based superconductors; scanning tunneling microscopy/spectroscopy; FESE FILMS; T-C; STATES; INTERPLAY; SPECTRUM; DENSITY; ATOMS;
D O I
10.1021/acs.nanolett.0c00028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electron pairing mechanism has always been one of the most challenging problems in high-temperature superconductors. Fe(Te,Se), as the superconductor with intrinsic topological property, may host Majorana bound states and has attracted tremendous interest. While in bulk Fe(Te,Se) the pairing mechanism has been experimentally investigated, it remains little understood in its two-dimensional limit counterpart. Here, by in situ scanning tunneling spectroscopy, we show clear evidence of the bosonic mode Omega beyond the superconducting gap Delta in monolayer FeTe0.5Se0.5/SrTiO3 (001) high-temperature superconductor. Statistically, Omega shows an obvious anticorrelation with Delta and appears below 2 Delta, consistent with the spin-excitation nature. Furthermore, the in-gap bound states induced by two types of magnetically different impurities support the sign-reversing pairing scenario. Our results not only suggest that the spin-excitation-like bosonic mode within a sign-reversing pairing plays an essential role in monolayer FeTe0.5Se0.5/SrTiO3 (001) but also offer the crucial information for investigating the high-temperature superconductivity in interfacial iron selenides.
引用
收藏
页码:2056 / 2061
页数:6
相关论文
共 52 条
[1]   Resilient Nodeless d-Wave Superconductivity in Monolayer FeSe [J].
Agterberg, D. F. ;
Shishidou, T. ;
O'Halloran, J. ;
Brydon, P. M. R. ;
Weinert, M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (26)
[2]   THEORY OF DIRTY SUPERCONDUCTORS [J].
ANDERSON, PW .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 11 (1-2) :26-30
[3]   Impurity-induced states in conventional and unconventional superconductors [J].
Balatsky, A. V. ;
Vekhter, I. ;
Zhu, Jian-Xin .
REVIEWS OF MODERN PHYSICS, 2006, 78 (02) :373-433
[4]   THEORY OF SUPERCONDUCTIVITY [J].
BARDEEN, J ;
COOPER, LN ;
SCHRIEFFER, JR .
PHYSICAL REVIEW, 1957, 108 (05) :1175-1204
[5]   Interfacial effects on the spin density wave in FeSe/SrTiO3 thin films [J].
Cao, Hai-Yuan ;
Tan, Shiyong ;
Xiang, Hongjun ;
Feng, D. L. ;
Gong, Xin-Gao .
PHYSICAL REVIEW B, 2014, 89 (01)
[6]   Direct visualization of sign-reversal s± superconducting gaps in FeTe0.55Se0.45 [J].
Chen, Mingyang ;
Tang, Qingkun ;
Chen, Xiaoyu ;
Gu, Qiangqiang ;
Yang, Huan ;
Du, Zengyi ;
Zhu, Xiyu ;
Wang, Enyu ;
Wang, Qiang-Hua ;
Wen, Hai-Hu .
PHYSICAL REVIEW B, 2019, 99 (01)
[7]   Imaging the real space structure of the spin fluctuations in an iron-based superconductor [J].
Chi, Shun ;
Aluru, Ramakrishna ;
Grothe, Stephanie ;
Kreisel, A. ;
Singh, Udai Raj ;
Andersen, Brian M. ;
Hardy, W. N. ;
Liang, Ruixing ;
Bonn, D. A. ;
Burke, S. A. ;
Wahl, Peter .
NATURE COMMUNICATIONS, 2017, 8
[8]   Scanning Tunneling Spectroscopy of Superconducting LiFeAs Single Crystals: Evidence for Two Nodeless Energy Gaps and Coupling to a Bosonic Mode [J].
Chi, Shun ;
Grothe, S. ;
Liang, Ruixing ;
Dosanjh, P. ;
Hardy, W. N. ;
Burke, S. A. ;
Bonn, D. A. ;
Pennec, Y. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[9]   Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering [J].
Christianson, A. D. ;
Goremychkin, E. A. ;
Osborn, R. ;
Rosenkranz, S. ;
Lumsden, M. D. ;
Malliakas, C. D. ;
Todorov, I. S. ;
Claus, H. ;
Chung, D. Y. ;
Kanatzidis, M. G. ;
Bewley, R. I. ;
Guidi, T. .
NATURE, 2008, 456 (7224) :930-932
[10]  
Du ZY, 2018, NAT PHYS, V14, P134, DOI [10.1038/nphys4299, 10.1038/NPHYS4299]