Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation

被引:298
作者
Wang, Xiluan [1 ]
Bai, Hua [1 ]
Shi, Gaoquan [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
关键词
GRAPHITE OXIDE; ELECTROCHEMICAL REDUCTION; HIGH-THROUGHPUT; TRANSPARENT; FILMS; EVOLUTION;
D O I
10.1021/ja200218y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide (GO) sheets prepared by Hummers' method have been separated into two portions with large (II) or small (f2) lateral dimensions from their aqueous dispersion. This method is based on the selective precipitation of GO sheets with lateral dimensions mostly (>90%) larger than 40 mu m(2) at a pH value of 4.0 because of their larger hydrophobic planes and fewer hydrophilic oxygenated groups. The hydrazine reduced Langmuir-Blodgett (LB) films of f1 showed much higher conductivities than those of f2. Furthermore, the thin film of f1 prepared by filtration exhibited a smaller d-space and much higher tensile strength and modulus than those of 12 films. The one-step size fractionation method reported here is simple, cheap, efficient, and environmentally friendly, which can be used for the size fractionation of GO sheets in large scale.
引用
收藏
页码:6338 / 6342
页数:5
相关论文
共 54 条
[1]   Interfacing Live Cells with Nanocarbon Substrates [J].
Agarwal, Shuchi ;
Zhou, Xiaozhu ;
Ye, Feng ;
He, Qiyuan ;
Chen, George C. K. ;
Soo, Jianchow ;
Boey, Freddy ;
Zhang, Hua ;
Chen, Peng .
LANGMUIR, 2010, 26 (04) :2244-2247
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode [J].
Chang, Haixin ;
Wang, Guangfeng ;
Yang, An ;
Tao, Xiaoming ;
Liu, Xuqing ;
Shen, Youde ;
Zheng, Zijian .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2893-2902
[5]   Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers [J].
Chen, Yao ;
Zhang, Xiong ;
Yu, Peng ;
Ma, Yanwei .
CHEMICAL COMMUNICATIONS, 2009, (30) :4527-4529
[6]   Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J].
Cote, Laura J. ;
Kim, Franklin ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :1043-1049
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[9]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[10]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306