Ricci solitons on Lorentzian Walker three-manifolds

被引:20
作者
Calvaruso, G. [1 ]
De Leo, B. [1 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Ricci soliton; Walker structure; Lorentzian manifold;
D O I
10.1007/s10474-010-0049-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Ricci solitons on Lorentzian three-manifolds (M,g (f) ) admitting a parallel degenerate line field. For several classes of these manifolds, described in terms of the defining function f, the existence of non-trivial Ricci solitons is proved.
引用
收藏
页码:269 / 293
页数:25
相关论文
共 9 条
[1]   Ricci solitons and Einstein-scalar field theory [J].
Akbar, M. M. ;
Woolgar, E. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
[2]  
Brozos-Vazquez M., ISRAEL J MA IN PRESS
[3]   Geometry of Ricci solitons [J].
Cao, Huai-Dong .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :121-142
[4]  
CASE JS, ARXIV07121321V2
[5]   Three-dimensional Lorentz manifolds admitting a parallel null vector field [J].
Chaichi, M ;
García-Río, E ;
Vázquez-Abal, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04) :841-850
[6]   NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS [J].
FRIEDAN, DH .
ANNALS OF PHYSICS, 1985, 163 (02) :318-419
[7]   Towards physically motivated proofs of the Poincare and geometrization conjectures [J].
Kholodenko, Arkady L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (02) :259-290
[8]   On solutions of the Ricci curvature equation and the Einstein equation [J].
Pina, Romildo ;
Tenenblat, Keti .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) :61-76
[9]  
Walker A. G., 1950, Quart. J. Math., Oxford, V1, P69, DOI [10.1093/qmath/1.1.69, DOI 10.1093/QMATH/1.1.69]