On the duality of variable Triebel-Lizorkin spaces

被引:1
|
作者
Drihem, Douadi [1 ]
机构
[1] Msila Univ, Lab Funct Anal & Geometry Spaces, Dept Math, POB 166, Msila 28000, Algeria
关键词
Besov-type space; Triebel-Lizorkin spaces; Duality; Variable exponent; BESOV-TYPE SPACES; ATOMIC DECOMPOSITION; SMOOTHNESS; ORDER; INTEGRABILITY; EXPONENT; SOBOLEV;
D O I
10.1007/s13348-019-00258-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove the duality of Triebel-Lizorkin spaces F1,qmml:mfenced close=")" open="("center dot alpha mml:mfenced close=")" open="("center dot$$ F_{1,q\left( \cdot \right) }<<^>>{\alpha \left( \cdot \right) }$$\end{document}. First, we prove the duality of associated sequence spaces. The result follows from the so-called phi\-transform characterization in the sense of Frazier and Jawerth.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 50 条
  • [1] Duality of Variable Exponent Triebel-Lizorkin and Besov Spaces
    Noi, Takahiro
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [2] Duality of Besov, Triebel-Lizorkin and Herz spaces with variable exponents
    Izuki M.
    Noi T.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (2): : 221 - 245
  • [3] DUALITY OF WEIGHTED MULTIPARAMETER TRIEBEL-LIZORKIN SPACES
    丁卫
    朱月萍
    Acta Mathematica Scientia, 2017, (04) : 1083 - 1104
  • [4] Variable Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 511 - 522
  • [5] DUALITY OF WEIGHTED MULTIPARAMETER TRIEBEL-LIZORKIN SPACES
    Ding, Wei
    Zhu, Yueping
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 1083 - 1104
  • [6] Duality and interpolation of anisotropic Triebel-Lizorkin spaces
    Bownik, Marcin
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) : 131 - 169
  • [7] On the duality of variable Triebel–Lizorkin spaces
    Douadi Drihem
    Collectanea Mathematica, 2020, 71 : 263 - 278
  • [8] Complex interpolation of variable Triebel-Lizorkin spaces
    Drihem, Douadi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 : 72 - 90
  • [9] Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces
    Li, Baode
    Bownik, Marcin
    Yang, Dachun
    Yuan, Wen
    POSITIVITY, 2012, 16 (02) : 213 - 244
  • [10] TRIEBEL-LIZORKIN TYPE SPACES WITH VARIABLE EXPONENTS
    Yang, Dachun
    Zhuo, Ciqiang
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 146 - 202