Frequency Control Capability of a DFIG-Based Wind Farm Using a Simple Linear Gain Droop Control

被引:0
|
作者
Hu, Yi-Liang [1 ]
Wu, Yuan-Kang [1 ]
机构
[1] Natl Chung Cheng Univ, 168 Univ Rd, Chiayi 62102, Taiwan
关键词
linear-gain droop control; approximation; generic model; doubly-fed induction generator; frequency control capability; frequency nadir (FN); INERTIAL RESPONSE; TURBINES; GENERATORS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With additional control loops, the wind turbines (WTs) have the frequency control capability to improve frequency nadir (FN) when a large disturbance occurs. To prevent the rotor speed of WT from reaching the minimum limit during the low wind speeds, a novel kinetic energy (KE) based droop control loop is proposed. In several traditional control loops, the droop gain is presented by a quadratic function of the WT rotor speeds. However, implementing a quadratic function in the generic model of WT is difficult. Therefore, in this study, a new linear-gain droop control loop is proposed for the doubly-fed induction generator (DFIG) based wind farm (WF). In the proposed control loop, the droop gain is a linear function of the WT rotor speeds. By selecting the proper coefficients of the linear function, the proposed linear droop gain can achieve a good approximation to the quadratic droop gain. The performance of the proposed droop control loop is demonstrated based on three wind-speed conditions. To verify the responses of system frequency and WT power output, four indices are developed. The simulation results demonstrate that the frequency control capability of the proposed linear-gain droop control loop is close to that of KE-based droop control loop.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Enhancement of demagnetization control for low-voltage ride-through capability in DFIG-based wind farm
    Dosoglu, M. Kenan
    Guvenc, Ugur
    Sonmez, Yusuf
    Yilmaz, Cemal
    ELECTRICAL ENGINEERING, 2018, 100 (02) : 491 - 498
  • [22] Enhancement of demagnetization control for low-voltage ride-through capability in DFIG-based wind farm
    M. Kenan Döşoğlu
    Uğur Güvenç
    Yusuf Sönmez
    Cemal Yılmaz
    Electrical Engineering, 2018, 100 : 491 - 498
  • [23] Torsional Oscillation Damping Control for DFIG-Based Wind Farm Participating in Power System Frequency Regulation
    Xi, Xinze
    Geng, Hua
    Yang, Geng
    Li, Shengnan
    Gao, Fei
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (04) : 3687 - 3701
  • [24] A PI control of DFIG-based wind farm for voltage regulation at remote location
    Ko, Hee-Sang
    Bruey, Sylvain
    Jatskevich, Juri
    Dumont, Guy
    Moshref, Ali
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 966 - +
  • [25] Mitigation of Subsynchronous Control Interaction in DFIG-Based Wind Farm Using Repetitive-PI
    Wang, Tianhao
    Zheng, Junyuan
    Chen, Qichao
    Liu, Yiqi
    Song, Wenlong
    IEEE ACCESS, 2023, 11 : 60807 - 60816
  • [26] Torsional Oscillation Damping Control for DFIG-based Wind Farm Participating in Power System Frequency Regulation
    Xi, Xinze
    Geng, Hua
    Yang, Geng
    2016 52ND ANNUAL MEETING OF THE IEEE INDUSTRY APPLICATIONS SOCIETY (IAS), 2016,
  • [27] Control Strategy of Large-scale DFIG-based Wind Farm for Power Grid Frequency Regulation
    Cao Zhangjie
    Wang Xiaoru
    Tan Jin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6835 - 6840
  • [28] Supplemental Control for System Frequency Support of DFIG-Based Wind Turbines
    Abdeen, Mohamed
    Sayyed, Muhammad
    Luis Dominguez-Garcia, Jose
    Kamel, Salah
    IEEE ACCESS, 2022, 10 (69364-69372): : 69364 - 69372
  • [29] Modeling and control for DFIG-based wind farm with LCC-HVDC connection
    Zhou, Honglin
    Yang, Geng
    Dianli Zidonghua Shebei / Electric Power Automation Equipment, 2009, 29 (07): : 8 - 12
  • [30] DFIG-Based rotor kinetic energy: Using adaptive droop control strategy
    Liu, Yongchen
    Tan, Chao
    Zheng, Tianyu
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1773 - 1778