Genetically regulated expression in late-onset Alzheimer's disease implicates risk genes within known and novel loci

被引:16
作者
Chen, Hung-Hsin [1 ,2 ]
Petty, Lauren E. [1 ,2 ]
Sha, Jin [3 ]
Zhao, Yi [4 ]
Kuzma, Amanda [4 ]
Valladares, Otto [4 ]
Bush, William [5 ]
Naj, Adam C. [3 ,4 ]
Gamazon, Eric R. [1 ,2 ]
Below, Jennifer E. [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Med, Vanderbilt Genet Inst, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Dept Med, Div Genet Med, Nashville, TN 37232 USA
[3] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[5] Case Western Reserve Univ, Sch Med, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; MENDELIAN RANDOMIZATION; IDENTIFIES VARIANTS; DEMENTIA; METAANALYSIS; TOMM40; AGE; HERITABILITY; DESIGN; INDIVIDUALS;
D O I
10.1038/s41398-021-01677-0
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Late-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants identified in genome-wide studies explain only similar to 8% of phenotypic variance. Due to its increased power and interpretability, genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and controls from the Alzheimer's Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer's Project (IGAP). Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD. Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes), illuminating the role of gene regulatory models in LOAD.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Early-onset Alzheimer's disease explained by polygenic risk of late-onset disease?
    Mantyh, William G.
    Cochran, J. Nicholas
    Taylor, Jared W.
    Broce, Iris J.
    Geier, Ethan G.
    Bonham, Luke W.
    Anderson, Ashlyn G.
    Sirkis, Daniel W.
    La Joie, Renaud
    Iaccarino, Leonardo
    Chaudhary, Kiran
    Edwards, Lauren
    Strom, Amelia
    Grant, Harli
    Allen, Isabel E.
    Miller, Zachary A.
    Gorno-Tempini, Marilu L.
    Kramer, Joel H.
    Miller, Bruce L.
    Desikan, Rahul S.
    Rabinovici, Gil D.
    Yokoyama, Jennifer S.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2023, 15 (04)
  • [22] Candidate genes for late-onset Alzheimer's disease: Focus on chromosome 12
    Panza, F
    Colacicco, AM
    D'Introno, A
    Capurso, C
    Liaci, M
    Capurso, SA
    Capurso, A
    Solfrizzi, V
    MECHANISMS OF AGEING AND DEVELOPMENT, 2006, 127 (01) : 36 - 47
  • [23] Probing the role of PPARγ in the regulation of late-onset Alzheimer's disease-associated genes
    Barrera, Julio
    Subramanian, Shobana
    Chiba-Falek, Ornit
    PLOS ONE, 2018, 13 (05):
  • [24] Expression of Novel Alzheimer's Disease Risk Genes in Control and Alzheimer's Disease Brains
    Karch, Celeste M.
    Jeng, Amanda T.
    Nowotny, Petra
    Cady, Janet
    Cruchaga, Carlos
    Goate, Alison M.
    PLOS ONE, 2012, 7 (11):
  • [25] SNP analysis of genes related to cholesterol metabolism and associated with late-onset Alzheimer's disease
    Kim, Dong Hee
    Gim, Jeong-An
    Mishra, Anshuman
    Lee, Kyeongjun
    Cho, Youngseuk
    Kim, Heui-Soo
    GENES & GENOMICS, 2017, 39 (06) : 593 - 600
  • [26] Biobank-wide association scan identifies risk factors for late-onset Alzheimer's disease and endophenotypes
    Yan, Donghui
    Hu, Bowen
    Darst, Burcu F.
    Mukherjee, Shubhabrata
    Kunkle, Brian W.
    Deming, Yuetiva
    Dumitrescu, Logan
    Wang, Yunling
    Naj, Adam
    Kuzma, Amanda
    Zhao, Yi
    Kang, Hyunseung
    Johnson, Sterling C.
    Carlos, Cruchaga
    Hohman, Timothy J.
    Crane, Paul K.
    Engelman, Corinne D.
    Lu, Qiongshi
    ELIFE, 2024, 12
  • [27] Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer's disease
    Barral, Sandra
    Cheng, Rong
    Reitz, Christiane
    Vardarajan, Badri
    Lee, Joseph
    Kunkle, Brian
    Beecham, Gary
    Cantwell, Laura S.
    Pericak-Vance, Margaret A.
    Farrer, Lindsay A.
    Haines, Jonathan L.
    Goate, Alison M.
    Foroud, Tatiana
    Boerwinkle, Eric
    Schellenberg, Gerard D.
    Mayeux, Richard
    ALZHEIMERS & DEMENTIA, 2015, 11 (12) : 1397 - 1406
  • [28] In vivo validation of late-onset Alzheimer's disease genetic risk factors
    Sasner, Michael
    Preuss, Christoph
    Pandey, Ravi S.
    Uyar, Asli
    Garceau, Dylan
    Kotredes, Kevin P.
    Williams, Harriet
    Oblak, Adrian L.
    Lin, Peter Bor-Chian
    Perkins, Bridget
    Soni, Disha
    Ingraham, Cindy
    Lee-Gosselin, Audrey
    Lamb, Bruce T.
    Howell, Gareth R.
    Carter, Gregory W.
    ALZHEIMERS & DEMENTIA, 2024, 20 (07) : 4970 - 4984
  • [29] Association of GWAS-linked loci with late-onset Alzheimer's disease in a northern Han Chinese population
    Tan, Lan
    Yu, Jin-Tai
    Zhang, Wei
    Wu, Zhong-Chen
    Zhang, Qun
    Liu, Qiu-Yan
    Wang, Wei
    Wang, Hui-Fu
    Ma, Xiao-Ying
    Cui, Wei-Zhen
    ALZHEIMERS & DEMENTIA, 2013, 9 (05) : 546 - 553
  • [30] Language Changes in Late-Onset Alzheimer's Disease
    Can, Eda
    Kuruoglu, Gulmira
    PSYCHOLINGUISTICS, 2019, 25 (02): : 50 - 68