Genetically regulated expression in late-onset Alzheimer's disease implicates risk genes within known and novel loci

被引:18
作者
Chen, Hung-Hsin [1 ,2 ]
Petty, Lauren E. [1 ,2 ]
Sha, Jin [3 ]
Zhao, Yi [4 ]
Kuzma, Amanda [4 ]
Valladares, Otto [4 ]
Bush, William [5 ]
Naj, Adam C. [3 ,4 ]
Gamazon, Eric R. [1 ,2 ]
Below, Jennifer E. [1 ,2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Med, Vanderbilt Genet Inst, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Dept Med, Div Genet Med, Nashville, TN 37232 USA
[3] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[5] Case Western Reserve Univ, Sch Med, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; MENDELIAN RANDOMIZATION; IDENTIFIES VARIANTS; DEMENTIA; METAANALYSIS; TOMM40; AGE; HERITABILITY; DESIGN; INDIVIDUALS;
D O I
10.1038/s41398-021-01677-0
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Late-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants identified in genome-wide studies explain only similar to 8% of phenotypic variance. Due to its increased power and interpretability, genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and controls from the Alzheimer's Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer's Project (IGAP). Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD. Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes), illuminating the role of gene regulatory models in LOAD.
引用
收藏
页数:12
相关论文
共 77 条
[1]   The GTEx Consortium atlas of genetic regulatory effects across human tissues [J].
Aguet, Francois ;
Barbeira, Alvaro N. ;
Bonazzola, Rodrigo ;
Brown, Andrew ;
Castel, Stephane E. ;
Jo, Brian ;
Kasela, Silva ;
Kim-Hellmuth, Sarah ;
Liang, Yanyu ;
Parsana, Princy ;
Flynn, Elise ;
Fresard, Laure ;
Gamazon, Eric R. ;
Hamel, Andrew R. ;
He, Yuan ;
Hormozdiari, Farhad ;
Mohammadi, Pejman ;
Munoz-Aguirre, Manuel ;
Ardlie, Kristin G. ;
Battle, Alexis ;
Bonazzola, Rodrigo ;
Brown, Christopher D. ;
Cox, Nancy ;
Dermitzakis, Emmanouil T. ;
Engelhardt, Barbara E. ;
Garrido-Martin, Diego ;
Gay, Nicole R. ;
Getz, Gad ;
Guigo, Roderic ;
Hamel, Andrew R. ;
Handsaker, Robert E. ;
He, Yuan ;
Hoffman, Paul J. ;
Hormozdiari, Farhad ;
Im, Hae Kyung ;
Jo, Brian ;
Kasela, Silva ;
Kashin, Seva ;
Kim-Hellmuth, Sarah ;
Kwong, Alan ;
Lappalainen, Tuuli ;
Li, Xiao ;
Liang, Yanyu ;
MacArthur, Daniel G. ;
Mohammadi, Pejman ;
Montgomery, Stephen B. ;
Munoz-Aguirre, Manuel ;
Rouhana, John M. ;
Hormozdiari, Farhad ;
Im, Hae Kyung .
SCIENCE, 2020, 369 (6509) :1318-1330
[2]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[3]   Association of MAPT haplotypes with Alzheimer's disease risk and MAPT brain gene expression levels [J].
Allen, Mariet ;
Kachadoorian, Michaela ;
Quicksall, Zachary ;
Zou, Fanggeng ;
Chai, High Seng ;
Younkin, Curtis ;
Crook, Julia E. ;
Pankratz, V. Shane ;
Carrasquillo, Minerva M. ;
Krishnan, Siddharth ;
Thuy Nguyen ;
Ma, Li ;
Malphrus, Kimberly ;
Lincoln, Sarah ;
Bisceglio, Gina ;
Kolbert, Christopher P. ;
Jen, Jin ;
Mukherjee, Shubhabrata ;
Kauwe, John K. ;
Crane, Paul K. ;
Haines, Jonathan L. ;
Mayeux, Richard ;
Pericak-Vance, Margaret A. ;
Farrer, Lindsay A. ;
Schellenberg, Gerard D. ;
Parisi, Joseph E. ;
Petersen, Ronald C. ;
Graff-Radford, Neill R. ;
Dickson, Dennis W. ;
Younkin, Steven G. ;
Ertekin-Taner, Niluefer .
ALZHEIMERS RESEARCH & THERAPY, 2014, 6 (04)
[4]   Exploiting the GTEx resources to decipher the mechanisms at GWAS loci [J].
Barbeira, Alvaro N. ;
Bonazzola, Rodrigo ;
Gamazon, Eric R. ;
Liang, Yanyu ;
Park, YoSon ;
Kim-Hellmuth, Sarah ;
Wang, Gao ;
Jiang, Zhuoxun ;
Zhou, Dan ;
Hormozdiari, Farhad ;
Liu, Boxiang ;
Rao, Abhiram ;
Hamel, Andrew R. ;
Pividori, Milton D. ;
Aguet, Francois ;
Bastarache, Lisa ;
Jordan, Daniel M. ;
Verbanck, Marie ;
Do, Ron ;
Stephens, Matthew ;
Ardlie, Kristin ;
McCarthy, Mark ;
Montgomery, Stephen B. ;
Segre, Ayellet V. ;
Brown, Christopher D. ;
Lappalainen, Tuuli ;
Wen, Xiaoquan ;
Im, Hae Kyung .
GENOME BIOLOGY, 2021, 22 (01)
[5]   Integrating predicted transcriptome from multiple tissues improves association detection [J].
Barbeira, Alvaro N. ;
Pividori, Milton D. ;
Zheng, Jiamao ;
Wheeler, Heather E. ;
Nicolae, Dan L. ;
Im, Hae Kyung .
PLOS GENETICS, 2019, 15 (01)
[6]   Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics [J].
Barbeira, Alvaro N. ;
Dickinson, Scott P. ;
Bonazzola, Rodrigo ;
Zheng, Jiamao ;
Wheeler, Heather E. ;
Torres, Jason M. ;
Torstenson, Eric S. ;
Shah, Kaanan P. ;
Garcia, Tzintzuni ;
Edwards, Todd L. ;
Stahl, Eli A. ;
Huckins, Laura M. ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Im, Hae Kyung .
NATURE COMMUNICATIONS, 2018, 9
[7]   Predicting tissue-specific gene expression from whole blood transcriptome [J].
Basu, Mahashweta ;
Wang, Kun ;
Ruppin, Eytan ;
Hannenhalli, Sridhar .
SCIENCE ADVANCES, 2021, 7 (14)
[8]   Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals [J].
Battle, Alexis ;
Mostafavi, Sara ;
Zhu, Xiaowei ;
Potash, James B. ;
Weissman, Myrna M. ;
McCormick, Courtney ;
Haudenschild, Christian D. ;
Beckman, Kenneth B. ;
Shi, Jianxin ;
Mei, Rui ;
Urban, Alexander E. ;
Montgomery, Stephen B. ;
Levinson, Douglas F. ;
Koller, Daphne .
GENOME RESEARCH, 2014, 24 (01) :14-24
[9]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[10]   The Rush Memory and Aging Project: Study design and baseline characteristics of the study cohort [J].
Bennett, DA ;
Schneider, JA ;
Buchman, AS ;
de Leon, CM ;
Bienias, JL ;
Wilson, RS .
NEUROEPIDEMIOLOGY, 2005, 25 (04) :163-175