Blending type approximation by modified Bernstein operators

被引:2
作者
Acu, Ana Maria [1 ]
Kajla, Arun [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
[2] Cent Univ Haryana, Sch Basic Sci, Mahendergarh 123031, Haryana, India
关键词
Bernstein operators; Global approximation; Positive approximation;
D O I
10.1007/s43036-021-00172-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present manuscript, we define the generalized Bernstein operators which reproduce linear functions. First, we compute an approximation theorem using Bohman-Korovkin's criterion and obtain the estimate of the rate of approximation by using modulus of smoothness, Lipschitz class and Voronovskaya formula for these operators. The rate of approximation for differentiable functions whose derivatives are of bounded variation is also established. Finally, the theoretical results are demonstrated by using MAPLE software.
引用
收藏
页数:22
相关论文
共 24 条
[1]   APPROXIMATION OF FUNCTIONS BY GENUINE BERNSTEIN-DURRMEYER TYPE OPERATORS [J].
Acar, Tuncer ;
Acu, Ana Maria ;
Manav, Nesibe .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04) :975-987
[2]   Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators [J].
Acar, Tuncer .
GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (04) :459-468
[3]   The new forms of Voronovskaya's theorem in weighted spaces [J].
Acar, Tuncer ;
Aral, Ali ;
Rasa, Ioan .
POSITIVITY, 2016, 20 (01) :25-40
[4]   GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY [J].
Acu, A. M. ;
Gonska, H. ;
Rasa, I. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (06) :843-864
[5]   Properties of discrete non-multiplicative operators [J].
Agratini, Octavian .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) :131-141
[6]  
Agrawal PN, 2015, BOLL UNIONE MAT ITAL, V8, P169, DOI 10.1007/s40574-015-0034-0
[7]   On a Generalization of Szasz-Mirakjan-Kantorovich Operators [J].
Altomare, Francesco ;
Cappelletti Montano, Mirella ;
Leonessa, Vita .
RESULTS IN MATHEMATICS, 2013, 63 (3-4) :837-863
[8]  
Barbosu D., 2004, J. Inequal. Pure Appl. Math, V5, P1
[9]   Polynomial Approximation of Anisotropic Analytic Functions of Several Variables [J].
Bonito, Andrea ;
DeVore, Ronald ;
Guignard, Diane ;
Jantsch, Peter ;
Petrova, Guergana .
CONSTRUCTIVE APPROXIMATION, 2021, 53 (02) :319-348
[10]   Shape-preserving properties of a new family of generalized Bernstein operators [J].
Cai, Qing-Bo ;
Xu, Xiao-Wei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,