The G-dwarf problem in the galaxy

被引:14
|
作者
Caimmi, R. [1 ]
机构
[1] Univ Padua, Dept Astron, I-35122 Padua, Italy
关键词
galaxies : evolution; stars : formation; evolution;
D O I
10.1016/j.newast.2007.11.007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper has two parts: one about observational constraints, and the other about chemical evolution models. In the first part, the empirical differential metallicity distribution (EDMD) is deduced from three different samples involving (i) local thick disk stars derived from Gliese and scaled in situ samples within the range, -1.20 <= [Fe/H] <= -0.20 [Wyse, R.F.G., Gilmore, G., 1995. AJ 110, 2771]; (ii) 46 likely metal-weak thick disk stars within the range, -2.20 <= [Fe/H] <= -1.00 [Chiba, M., Beers, T.C., 2000. AJ 119, 2843]; (iii) 287 chemically selected G dwarfs within 25 pc from the Sun, with the corrections performed in order to take into account the stellar scale height [Rocha-Pinto, H.J., Maciel, W.J., 1996. MNRAS 279, 447]; in addition to previous results [Caimmi, R., 2001b. AN 322, 241; Caimmi, R., 2007. NewA 12, 289] related to (iv) 372 solar neighbourhood halo subdwarfs [Ryan, S.G., Norris, J.E., 1991. AJ 101, 1865]; and (v) 268 K-giant bulge stars [Sadler, E.M., Rich, R.M., Terndrup, D.M., 1996. AJ 112, 171]. The metal-poor and metal-rich EDMD related to the thick disk shows similarities with their halo and bulge counterparts, respectively. Then the thick disk is conceived as made of two distinct regions: the halo-like and the bulge-like thick disk, and the related EDMD is deduced. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the thick disk, the thick + thin disk, and the Galaxy, is determined by weighting the mass. In the second part, models of chemical evolution for the halo-like thick disk, the bulge-like thick disk, and the thin disk, are computed assuming the instantaneous recycling approximation. The EDMD data are fitted, to an acceptable extent, by simple models of chemical evolution implying both homogeneous and inhomogencous star formation, provided that star formation is inhibited during thick disk formation, with respect to the thin disk. The initial mass function (IMF) is assumed to be a universal power law, which implies the same value of the true yield in different subsystems. The theoretical differential metallicity distribution (TDMD) is first determined for the halo-like thick disk, the bulge-like thick disk, and the thin disk separately, and then for the Galaxy by weighting the mass. An indicative comparison is performed between the EDMD deduced for the disk both in presence and in absence of [O/Fe] plateau, and its counterpart computed for (vi) N = 523 nearby stars within the range, -1.5 <= [Fe/H] <= 0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation [Ramirez, I., Allende Prieto, C., Lambert, D.L., 2007. A&A 465, 271]. Both distributions are found to exhibit a similar trend, although systematic differences exist. In addition, the related empirical age-metallicity relation (EAMR) cannot be fitted by the theoretical age-metallicity relation (TAMR) predicted by the model, and the reasons for this discrepancy are explained. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 339
页数:26
相关论文
共 50 条
  • [41] THE EXTENSIVE AGE GRADIENT OF THE CARINA DWARF GALAXY
    Battaglia, G.
    Irwin, M.
    Tolstoy, E.
    de Boer, T.
    Mateo, M.
    ASTROPHYSICAL JOURNAL LETTERS, 2012, 761 (02)
  • [42] BVR photometry of the resolved dwarf galaxy HoIX
    Georgiev, TB
    Bomans, DJ
    ASTRONOMY & ASTROPHYSICS, 2004, 423 (01): : 87 - 95
  • [43] Feedback and the formation of dwarf galaxy stellar haloes
    Stinson, G. S.
    Dalcanton, J. J.
    Quinn, T.
    Gogarten, S. M.
    Kaufmann, T.
    Wadsley, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (03) : 1455 - 1466
  • [44] The Host Galaxy of the Dwarf Seyfert UGC 06728
    Bentz, Misty C.
    ASTROPHYSICAL JOURNAL, 2021, 908 (01):
  • [45] Globular Cluster Candidates in the Sagittarius Dwarf Galaxy
    Piatt, Andres E.
    ASTRONOMICAL JOURNAL, 2021, 162 (06):
  • [46] THE STELLAR AND GASEOUS CONTENTS OF THE ORION DWARF GALAXY
    Cannon, John M.
    Haynes, Korey
    Most, Hans
    Salzer, John J.
    Haugland, Kaitlin
    Scudder, Jillian
    Sugden, Arthur
    Weindling, Jacob
    ASTRONOMICAL JOURNAL, 2010, 139 (06): : 2170 - 2183
  • [47] THE MASS DEPENDENCE OF DWARF SATELLITE GALAXY QUENCHING
    Slater, Colin T.
    Bell, Eric F.
    ASTROPHYSICAL JOURNAL, 2014, 792 (02):
  • [48] ABUNDANCES FOR GIANT STARS IN THE DRACO DWARF GALAXY
    LEHNERT, MD
    BELL, RA
    HESSER, JE
    OKE, JB
    ASTROPHYSICAL JOURNAL, 1992, 395 (02): : 466 - 474
  • [49] The chemical evolution of the dwarf spheroidal galaxy Sextans
    Theler, R.
    Jablonka, P.
    Lucchesi, R.
    Lardo, C.
    North, P.
    Irwin, M.
    Battaglia, G.
    Hill, V.
    Tolstoy, E.
    Venn, K.
    Helmi, A.
    Kaufer, A.
    Primas, F.
    Shetrone, M.
    ASTRONOMY & ASTROPHYSICS, 2020, 642
  • [50] The structure of Andromeda II dwarf spheroidal galaxy
    Del Pino, Andres
    Lokas, Ewa L.
    Hidalgo, Sebastian L.
    Fouquet, Sylvain
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (04) : 4999 - 5015