Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles

被引:23
作者
Kim, Jinwoo [1 ]
Lee, Young Jun [1 ]
Ku, Kang Hee [2 ]
Kim, Bumjoon J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
CRITICAL MICELLE CONCENTRATION; POLYMER; MICROPARTICLES; CONDUCTIVITY; INTERFACES; FILMS;
D O I
10.1021/acs.macromol.2c01465
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Photoactive shape-changing particles offer a promising platform for smart materials with tunable properties at high spatiotemporal resolutions. Herein, a series of spiropyran-based surfactants with different alkyl spacer lengths are developed to achieve photoactive, shape-changing particles through confined self-assembly of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) within an evaporative emulsion. The length of the alkyl chain spacer between the spiropyran headgroup and ionic chain-end is modulated from hexyl to ethyl decanoate to provide surfactants with tunable amphiphilicity. Under UV light, the hydrophilic ring-opened merocyanine surfactants produce onion-like microspheres with a P4VP surface. Conversely, by exposure to visible light, the ring-closure reaction of the spiropyran moieties shifts their hydrophobicity and yields striped ellipsoids with axially stacked PS and P4VP blocks. This sphere-to-ellipsoid transition is observed only for surfactants that contain spacers longer than or equal to octyl. The effects of photoswitchable surfactants on their interfacial properties and corresponding morphological evolution of the particles are investigated to elucidate the mechanism of the shape transition of the photoactive particles.
引用
收藏
页码:8355 / 8364
页数:10
相关论文
empty
未找到相关数据