Distinct roles of parvalbumin- and somatostatin-expressing neurons in flexible representation of task variables in the prefrontal cortex

被引:9
作者
Jeong, Huijeong [1 ]
Kim, Dohoung [2 ]
Song, Min [3 ]
Paik, Se-Bum [3 ]
Jung, Min Whan [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Daejeon 34141, South Korea
[2] Inst for Basic Sci Korea, Ctr Synapt Brain Dysfunct, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Program Brain & Cognit Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Medial prefrontal cortex; Flexibility; Inhibitory neuron; Value; Classical conditioning; Mouse; WORKING-MEMORY; INTERNEURONS; DYNAMICS; MAPS; COMPUTATIONS; HIPPOCAMPUS; MECHANISMS; SUBTYPES; CELLS; RATS;
D O I
10.1016/j.pneurobio.2020.101773
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A hallmark of the prefrontal cortex (PFC) is flexible representation of task-relevant variables. To investigate roles of different interneuron subtypes in this process, we examined discharge characteristics and inactivation effects of parvalbumin (PV)- and somatostatin (SST)-expressing neurons in the mouse PFC during probabilistic classical conditioning. We found activity patterns and inactivation effects differed between PV and SST neurons: SST neurons conveyed cue-associated quantitative value signals until trial outcome, whereas PV neurons maintained valence signals even after trial outcome. Also, PV, but not SST, neuronal population showed opposite responses to reward and punishment. Moreover, inactivation of PV, but not SST, neurons affected outcome responses and activity reversal of pyramidal neurons. Modeling suggested opposite responses of PV neurons to reward and punishment as an efficient mechanism for facilitating rapid cue-outcome contingency learning. Our results suggest primary roles of mPFC PV neurons in rapid value updating and SST neurons in predicting values of upcoming events.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat [J].
Baeg, EH ;
Kim, YB ;
Jang, J ;
Kim, HT ;
Mook-Jung, I ;
Jung, MW .
CEREBRAL CORTEX, 2001, 11 (05) :441-451
[2]   Dynamics of population code for working memory in the prefrontal cortex [J].
Baeg, EH ;
Kim, YB ;
Huh, K ;
Mook-Jung, I ;
Kim, HT ;
Jung, MW .
NEURON, 2003, 40 (01) :177-188
[3]   The prefrontal cortex and flexible Behavior [J].
Barbas, Helen ;
Zikopoulos, Basilis .
NEUROSCIENTIST, 2007, 13 (05) :532-545
[4]   Stable Representations of Decision Variables for Flexible Behavior [J].
Bari, Bilal A. ;
Grossman, Cooper D. ;
Lubin, Emily E. ;
Rajagopalan, Adithya E. ;
Cressy, Jianna, I ;
Cohen, Jeremiah Y. .
NEURON, 2019, 103 (05) :922-+
[5]   Neural structures underlying set-shifting: Roles of medial prefrontal cortex and anterior cingulate cortex [J].
Bissonette, Gregory B. ;
Powell, Elizabeth M. ;
Roesch, Matthew R. .
BEHAVIOURAL BRAIN RESEARCH, 2013, 250 :91-101
[6]   Reversal learning and attentional set-shifting in mice [J].
Bissonette, Gregory B. ;
Powell, Elizabeth M. .
NEUROPHARMACOLOGY, 2012, 62 (03) :1168-1174
[7]   TEMPORAL STRUCTURE IN SPATIALLY ORGANIZED NEURONAL ENSEMBLES - A ROLE FOR INTERNEURONAL NETWORKS [J].
BUZSAKI, G ;
CHROBAK, JJ .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (04) :504-510
[8]   BENZODIAZEPINES BLOCK LONG-TERM POTENTIATION IN SLICES OF HIPPOCAMPUS AND PIRIFORM CORTEX [J].
DELCERRO, S ;
JUNG, M ;
LYNCH, G .
NEUROSCIENCE, 1992, 49 (01) :1-6
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]   An adaptive coding model of neural function in prefrontal cortex [J].
Duncan, J .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (11) :820-829