Thermal diffusivity and microstructure of spark plasma sintered TiB2-SiC-Ti composite

被引:86
作者
Vajdi, Mohammad [1 ]
Moghanlou, Farhad Sadegh [1 ]
Ahmadi, Zohre [1 ]
Motallebzadeh, Amir [2 ]
Asl, Mehdi Shahedi [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil, Iran
[2] Koc Univ, Surface Sci & Technol Ctr, Istanbul, Turkey
关键词
TiB2-SiC; Titanium dopant; Spark plasma sintering; Thermal diffusivity; Microstructure; Finite element method; GRAPHITE NANO-FLAKES; MECHANICAL-PROPERTIES; FRACTOGRAPHICAL CHARACTERIZATION; C-SF; DENSIFICATION; CONDUCTIVITY; ZRB2; OPTIMIZATION; TEMPERATURE; CERAMICS;
D O I
10.1016/j.ceramint.2019.01.141
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work investigates the microstructural development, thermal properties and phase evolution of spark plasma sintered TiB2-SiC-Ti (TST) ceramic composite. A fully dense TiB2-30 vol% SiC composite, doped with 5 wt% Ti, was sintered by spark plasma at 1900 degrees C for 6 min under 35 MPa pressure in vacuum. The XRD analysis and thermodynamic assessments verified the in-situ synthesis of TiB, TiC and TiSi2 compounds during the sintering process due to the chemical reaction of Ti additive with the SiC reinforcement. The TST composite showed higher thermal conductivity than the monolithic TiB2 at low temperatures, however, a reverse trend was observed at higher temperatures. The governing equation of heat diffusion through a cutting tool, made of monolithic TiB2 and TST, was solved by finite element method and the temperature distribution was obtained. The results showed that TST composite has lower value of maximum temperature compared to the reported values for WC. Cutting tools with lower temperatures result in higher accuracy and more tool lifespan.
引用
收藏
页码:8333 / 8344
页数:12
相关论文
共 64 条
[1]   Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Farahbakhsh, Iman ;
Balak, Zohre .
CERAMICS INTERNATIONAL, 2018, 44 (10) :11431-11437
[2]   Sintering behavior of ZrB2-SiC composites doped with Si3N4: A fractographical approach [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Kakroudi, Mahdi Ghassemi ;
Farahbakhsh, Iman .
CERAMICS INTERNATIONAL, 2017, 43 (13) :9699-9708
[3]   Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2-SiC composites [J].
Ahmadi, Zohre ;
Nayebi, Behzad ;
Asl, Mehdi Shahedi ;
Kakroudi, Mandi Ghassemi .
MATERIALS CHARACTERIZATION, 2015, 110 :77-85
[4]   Spark plasma sintering of TiAl-Ti3AlC2 composite [J].
Akhlaghi, Maryam ;
Tayebifard, Seyed Ali ;
Salahi, Esmaeil ;
Asl, Mehdi Shahedi .
CERAMICS INTERNATIONAL, 2018, 44 (17) :21759-21764
[5]  
[Anonymous], 2007, Fundamentals of heat and mass transfer
[6]   Diversity in thermal conductivity of aqueous Al2O3- and Ag-nanofluids measured by transient hot-wire and laser flash methods [J].
Aparna, Z. ;
Michael, M. M. ;
Pabi, S. K. ;
Ghosh, S. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 94 :231-245
[7]   TEM characterization of spark plasma sintered ZrB2-SiC-graphene nanocomposite [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Shokouhimehr, Mohammadreza .
CERAMICS INTERNATIONAL, 2018, 44 (13) :15269-15273
[8]   A novel ZrB2-VB2-ZrC composite fabricated by reactive spark plasma sintering [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Ahmadi, Zohre ;
Parvizi, Soroush ;
Shokouhimehr, Mohammadreza .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 731 :131-139
[9]   Effects of carbon additives on the properties of ZrB2-based composites: A review [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Ahmadi, Zohre ;
Zamharir, Mehran Jaberi ;
Shokouhimehr, Mohammadreza .
CERAMICS INTERNATIONAL, 2018, 44 (07) :7334-7348