Towards 3D-lithium ion microbatteries based on silicon/graphite blend anodes using a dispenser printing technique

被引:25
作者
Drews, Mathias [1 ]
Tepner, Sebastian [1 ]
Haberzettl, Peter [1 ]
Gentischer, Harald [1 ]
Beichel, Witali [1 ]
Breitwieser, Matthias [2 ,3 ]
Vierrath, Severin [2 ]
Biro, Daniel [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Univ Freiburg, IMTEK, Dept Microsyst Engn, Electrochem Energy Syst, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[3] Hahn Schickard, Georges Koehler Allee 103, D-79110 Freiburg, Germany
关键词
THIN-FILM LITHIUM; HIGH-ENERGY; 3D CATHODE; PERFORMANCE; ELECTRODES; PARAMETERS; BATTERIES;
D O I
10.1039/d0ra03161e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work we present for the first time high capacity silicon/carbon-graphite blend slurries designed for application in 3D-printed lithium ion microbatteries (3D-MLIBs). The correlation between electrochemical and rheological properties of the corresponding slurries was systematically investigated with the prospect of production by an automated dispensing process. A variation of the binder content (carboxymethyl cellulose/styrene-butadiene rubber, CMC/SBR) between 6 wt%, 12 wt%, 18 wt% and 24 wt% in the anode slurry proved to be crucial for the printing process. Regarding the rheological properties increasing binder content leads to increased viscosity and yield stress values promising printed structures with high aspect ratios. Consequently, interdigital 3D-printed micro anode structures with increasing aspect ratios were printed with increasing binder content. For printed 6-layer structures aspect ratios of 6.5 were achieved with anode slurries containing 24 wt% binder. Electrochemical results from planar coin cell measurements showed that anodes containing 12 wt% CMC/SBR binder content exhibited stable cycling at the highest charge capacities of 484 mA h g(-1)at a current rate of C/4. Furthermore, at 4C the cells showed high capacity retention of 89% compared to cycling at C/4. Based on this study and the given material formulation we recommend 18 wt% CMC/SBR as the best trade-off between electrochemical and rheological properties for future work with fully 3D-printed MLIBs.
引用
收藏
页码:22440 / 22448
页数:9
相关论文
共 41 条
[1]  
Ager III J. W., 1991, OPTICS ELECTROOPTICS, P24
[2]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[3]   3-D printing: The new industrial revolution [J].
Berman, Barry .
BUSINESS HORIZONS, 2012, 55 (02) :155-162
[4]   Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers [J].
Bresser, Dominic ;
Buchholz, Daniel ;
Moretti, Arianna ;
Varzi, Alberto ;
Passerini, Stefano .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3096-3127
[5]   Model of micropore closure in hard carbon prepared from sucrose [J].
Buiel, ER ;
George, AE ;
Dahn, JR .
CARBON, 1999, 37 (09) :1399-1407
[6]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[7]   3D Printed High-Performance Lithium Metal Microbatteries Enabled by Nanocellulose [J].
Cao, Daxian ;
Xing, Yingjie ;
Tantratian, Karnpiwat ;
Wang, Xiao ;
Ma, Yi ;
Mukhopadhyay, Alolika ;
Cheng, Zheng ;
Zhang, Qing ;
Jiao, Yucong ;
Chen, Lei ;
Zhu, Hongli .
ADVANCED MATERIALS, 2019, 31 (14)
[8]   One-to-One Comparison of Graphite-Blended Negative Electrodes Using Silicon Nanolayer-Embedded Graphite versus Commercial Benchmarking Materials for High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Kim, Namhyung ;
Ma, Jiyoung ;
Cho, Jaephil ;
Ko, Minseong .
ADVANCED ENERGY MATERIALS, 2017, 7 (15)
[9]   Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes [J].
Chevrier, Vincent L. ;
Liu, Li ;
Dinh Ba Le ;
Lund, Jesse ;
Molla, Biniam ;
Reimer, Karl ;
Krause, Larry J. ;
Jensen, Lowell D. ;
Figgemeier, Egbert ;
Eberman, Kevin W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A783-A791
[10]   Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries [J].
Choi, NS ;
Lee, YG ;
Park, JK .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :61-66