Precise Morrey regularity of the weak solutions to a kind of quasilinear systems with discontinuous data

被引:5
作者
Fattorusso, Luisa [1 ]
Softova, Lubomira G. [1 ,2 ]
机构
[1] Mediterranea Univ Reggio Calabria, Via Univ 251, I-89124 Reggio Di Calabria, Italy
[2] Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
quasilinear elliptic systems; controlled growth conditions; componentwise coercivity; Reifenberg-flat domain; Morrey spaces; PARABOLIC EQUATIONS; GLOBAL REGULARITY; ELLIPTIC-SYSTEMS; GRADIENT; INTEGRABILITY;
D O I
10.14232/ejqtde.2020.1.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Caratheodory maps having Morrey regularity in x and verifying controlled growth conditions with respect to the other variables. We have obtained boundedness of the weak solution to the problem that permits to apply an iteration procedure in order to find optimal Morrey regularity of its gradient.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 36 条
  • [1] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [2] ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
  • [3] [Anonymous], AM MATH SOC TRANSLAT
  • [4] [Anonymous], 1983, GRUNDLEHREN MATH WIS
  • [5] ARKHIPOVA AA, 1995, AM MATH SOC TRANSL, V164, P15
  • [6] Elliptic equations with BMO coefficients in Reifenberg domains
    Byun, SS
    Wang, LH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1283 - 1310
  • [7] Gradient estimates for elliptic systems in non-smooth domains
    Byun, Sun-Sig
    Wang, Lihe
    [J]. MATHEMATISCHE ANNALEN, 2008, 341 (03) : 629 - 650
  • [8] Parabolic equations in time dependent Reifenberg domains
    Byun, Sun-Sig
    Wang, Lihe
    [J]. ADVANCES IN MATHEMATICS, 2007, 212 (02) : 797 - 818
  • [9] Asymptotically regular operators in generalized Morrey spaces
    Byun, Sun-Sig
    Softova, Lubomira
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (01) : 64 - 76
  • [10] Sobolev-Morrey regularity of solutions to general quasilinear elliptic equations
    Byun, Sun-Sig
    Palagachev, Dian K.
    Shin, Pilsoo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 176 - 190