Numerical simulations of magnetic structures

被引:0
作者
Kitiashvili, I. N. [1 ]
Kosovichev, A. G. [1 ]
Wray, A. A. [1 ]
Mansour, N. N.
机构
[1] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
PHYSICS OF SUN AND STAR SPOTS | 2011年 / 273期
关键词
Sun: magnetic fields; sunspots; methods: numerical; SOLAR; MAGNETOCONVECTION; OSCILLATIONS; CONVECTION; REGIONS;
D O I
10.1017/S1743921311015444
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use 3D radiative MHD simulations of the upper turbulent convection layer for investigation of physical mechanisms of formation of magnetic structures on the Sun. The simulations include all essential physical processes, and are based of the LES (Large-Eddy Simulations) approach for describing the sub-grid scale turbulence. The simulation domain covers the top layer of the convection zone and the lower atmosphere. The results reveal a process of spontaneous formation of stable magnetic structures from an initially weak vertical magnetic field, uniformly distributed in the simulation domain. The process starts concentration of magnetic patches at the boundaries of granular cells, which are subsequently merged together into a stable large-scale structure by converging downdrafts below the surface. The resulting structure represents a compact concentration of strong magnetic field, reaching 6 kG in the interior. It has a cluster-like internal structurization, and is maintained by strong downdrafts extending into the deep layers.
引用
收藏
页码:315 / 319
页数:5
相关论文
共 50 条
  • [31] NUMERICAL SIMULATIONS OF MULTIPLE SCATTERING OF THE f-MODE BY FLUX TUBES
    Felipe, T.
    Crouch, A.
    Birch, A.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 775 (01)
  • [32] NUMERICAL SIMULATIONS OF IMPULSIVELY GENERATED ALFVEN WAVES IN SOLAR MAGNETIC ARCADES
    Chmielewski, P.
    Murawski, K.
    Musielak, Z. E.
    Srivastava, A. K.
    [J]. ASTROPHYSICAL JOURNAL, 2014, 793 (01)
  • [33] The horizontal internetwork magnetic field:: Numerical simulations in comparison to observations with Hinode
    Steiner, O.
    Rezaei, R.
    Schaffenberger, W.
    Wedemeyer-Bohm, S.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2008, 680 (01): : L85 - L88
  • [34] Numerical 3D simulations of buoyant magnetic flux tubes
    Dorch, SBF
    Nordlund, A
    [J]. ASTRONOMY & ASTROPHYSICS, 1998, 338 (01): : 329 - 339
  • [35] Numerical simulations for MHD coronal seismology
    Pascoe, David James
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2014, 14 (07) : 805 - 830
  • [36] Simulations of cosmic rays in large-scale structures: numerical and physical effects
    Vazza, F.
    Gheller, C.
    Brueggen, M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 439 (03) : 2662 - 2677
  • [37] Numerical MHD simulations of solar flares and their associated small-scale structures
    Gonzalez-Servin, Mauricio
    Gonzalez-Aviles, J. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (03) : 5098 - 5113
  • [38] Numerical Modeling of Solar Convection and Oscillations in Magnetic Regions
    Kitiashvili, I. N.
    Jacoutot, L.
    Kosovichev, A. G.
    Wray, A. A.
    Mansour, N. N.
    [J]. STELLAR PULSATION: CHALLENGES FOR THEORY AND OBSERVATION, 2009, 1170 : 569 - +
  • [39] On the alignment of PNe and local magnetic field at the Galactic centre: magnetohydrodynamical numerical simulations
    Falceta-Goncalves, D.
    Monteiro, H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 438 (04) : 2853 - 2863
  • [40] Revealing the nature of magnetic shadows with numerical 3D-MHD simulations
    Nutto, C.
    Steiner, O.
    Roth, M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 542