Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators

被引:41
作者
Clark, S
Gesztesy, F [1 ]
Renger, W
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
[3] Dr Johannes Heidenhain GMBH, D-83301 Traunreut, Germany
基金
美国国家科学基金会;
关键词
trace formulas; Borg theorems; Jacobi operators; Dirac difference operators;
D O I
10.1016/j.jde.2005.04.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Borg-type uniqueness theorems for matrix-valued Jacobi operators H and supersymmetric Dirac difference operators D are proved. More precisely, assuming reflectionless matrix coefficients A, B in the self-adjoint Jacobi operator H=AS(+)+A(-)S(-)+B (with S-+/- the right/left shift operators on the lattice Z) and the spectrum of H to be a compact interval [E-, E+], E- < E+, we prove that A and B are certain multiples of the identity matrix. An analogous result which, however, displays a certain novel nonuniqueness feature, is proved for supersymmetric self-adjoint Dirac difference operators D with spectrum given by [-E-+(1/2), -E--(1/2)] boolean OR [E--(1/2), E-+(1/2)], 0 <= E- < E+. Our approach is based on trace formulas and matrix-valued (exponential) Herglotz representation theorems. As a by-product of our techniques we obtain the extension of Flaschka's Borg-type result for periodic scalar Jacobi operators to the class of reflectionless matrix-valued Jacobi operators. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 182
页数:39
相关论文
共 56 条
[1]   INVERSE SPECTRAL PROBLEMS FOR DIFFERENCE-OPERATORS WITH RATIONAL SCATTERING MATRIX FUNCTION [J].
ALPAY, D ;
GOHBERG, I .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 20 (02) :125-170
[2]  
[Anonymous], LECT NOTES PHYS
[3]  
APTEKAREV AI, 1984, MATH USSR SB, V49, P325
[4]  
Aronszajn N., 1956, J ANAL MATH, V5, P321, DOI DOI 10.1007/BF02937349
[5]  
Berezanskii J. M., 1968, TRANSL MATH MONOGRAP, V17
[6]  
Berezansky Yu. M., 1986, Ukr. Mat. Zh., V38, P74
[8]  
BULLA W, 1998, MEMOIRS AM MATH SOC, V135
[9]  
CAREY RW, 1976, J REINE ANGEW MATH, V283, P294
[10]   Weyl-Titchmarsh M-function asymptotics for matrix-valued Schrodinger operators [J].
Clark, S ;
Gesztesy, F .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 82 :701-724