ON LIFTING OF IDEMPOTENTS AND SEMIREGULAR ENDOMORPHISM RINGS

被引:4
|
作者
Lee, Tsiu-Kwen [1 ,2 ]
Zhou, Yiqiang [3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Natl Ctr Theoret Sci, Taipei Off, Div Math, Hsinchu, Taiwan
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
endomorphism ring; semiregular ring; (strong) lifting of idempotents; kernel-extending module; image-lifting module; MODULES;
D O I
10.4064/cm125-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with some observations on (strong) lifting of idempotents, we characterize a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with small image. This is the dual of Yamagata's work [Colloq. Math. 113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with large kernel.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 50 条
  • [1] On Semiregular Endomorphism Rings and the Dual of Yamagata's Theorem
    Kosan, Tamer
    Quynh, Truong Cong
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (02) : 483 - 493
  • [2] STRICT RADICALS AND ENDOMORPHISM RINGS
    Gardner, B. J.
    ACTA MATHEMATICA HUNGARICA, 2009, 124 (04) : 371 - 383
  • [3] A new generalization of semiregular rings
    Amouzegar, Tayyebeh
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2018, 45 (02): : 167 - 173
  • [4] Idempotents and structures of rings
    Anh, P. N.
    Birkenmeier, G. F.
    van Wyk, L.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10) : 2002 - 2029
  • [5] ON COHERENCE OF ENDOMORPHISM RINGS
    Zhu, Hai-Yan
    Ding, Nan-Qing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (02) : 186 - 194
  • [6] REGULARITY IN ENDOMORPHISM RINGS
    Mader, Adolf
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) : 2823 - 2844
  • [7] Abelian groups whose endomorphism rings are V-rings
    Amini, Afshin
    Amini, Babak
    Momtahan, Ehsan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [8] Properties of endomorphism rings
    K. Varadarajan
    Acta Mathematica Hungarica, 1997, 74 : 83 - 92
  • [9] Idempotents in representation rings of quivers
    Kinser, Ryan
    Schiffler, Ralf
    ALGEBRA & NUMBER THEORY, 2012, 6 (05) : 967 - 994
  • [10] Semicommutativity of Rings by the Way of Idempotents
    Kose, Handan
    Ungor, Burcu
    Harmanci, Abdullah
    FILOMAT, 2019, 33 (11) : 3497 - 3508