ON LIFTING OF IDEMPOTENTS AND SEMIREGULAR ENDOMORPHISM RINGS

被引:4
作者
Lee, Tsiu-Kwen [1 ,2 ]
Zhou, Yiqiang [3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Natl Ctr Theoret Sci, Taipei Off, Div Math, Hsinchu, Taiwan
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
endomorphism ring; semiregular ring; (strong) lifting of idempotents; kernel-extending module; image-lifting module; MODULES;
D O I
10.4064/cm125-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with some observations on (strong) lifting of idempotents, we characterize a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with small image. This is the dual of Yamagata's work [Colloq. Math. 113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with large kernel.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 17 条
[1]   Strong lifting splits [J].
Alkan, M. ;
Nicholson, W. K. ;
Ozcan, A. C. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (08) :1879-1888
[2]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[3]  
Escalona MAF, 1999, J ALGEBRA, V222, P511
[4]  
Faith C., 1964, ARCH MATH, V15, P166
[5]   Strongly discrete modules [J].
Ganesan, Lalitha ;
Vanaja, N. .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (03) :897-913
[6]   Rings with internal cancellation [J].
Khurana, D ;
Lam, TY .
JOURNAL OF ALGEBRA, 2005, 284 (01) :203-235
[7]   SUBSTRUCTURES OF HOM [J].
Lee, Tsiu-Kwen ;
Zhou, Yiqiang .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (01) :119-127
[8]  
Mohamed S., 1977, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V24, P496
[9]  
Mohamed S. H., 1990, LONDON MATH SOC LECT, V147
[10]   SEMIREGULAR MODULES AND RINGS [J].
NICHOLSON, WK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (05) :1105-1120