Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2011年 / 4卷 / 06期
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [41] Multiple Comparisons in Microarray Data Analysis
    Zhang, Donghui
    Liu, Li
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (03): : 368 - 382
  • [42] Significance analysis of microarray transcript levels in time series experiments
    Barbara Di Camillo
    Gianna Toffolo
    Sreekumaran K Nair
    Laura J Greenlund
    Claudio Cobelli
    BMC Bioinformatics, 8
  • [43] Penalized binary regression as statistical learning tool for microarray analysis
    Schimek, Michael G.
    Art of Semiparametrics, 2006, : 67 - 76
  • [44] A STATISTICAL FRAMEWORK FOR THE ANALYSIS OF MICROARRAY PROBE-LEVEL DATA
    Wu, Zhijin
    Irizarry, Rafael A.
    ANNALS OF APPLIED STATISTICS, 2007, 1 (02) : 333 - 357
  • [45] A statistical framework for differential network analysis from microarray data
    Gill, Ryan
    Datta, Somnath
    Datta, Susmita
    BMC BIOINFORMATICS, 2010, 11
  • [46] An evaluation of statistical methods for DNA methylation microarray data analysis
    Dongmei Li
    Zidian Xie
    Marc Le Pape
    Timothy Dye
    BMC Bioinformatics, 16 (1)
  • [47] DExplore: An Online Tool for Detecting Differentially Expressed Genes from mRNA Microarray Experiments
    Katsiki, Anna D.
    Karatzas, Pantelis E.
    De Lastic, Hector-Xavier
    Georgakilas, Alexandros G.
    Tsitsilonis, Ourania
    Vorgias, Constantinos E.
    BIOLOGY-BASEL, 2024, 13 (05):
  • [48] On Design and Statistical Analysis in Soil Treatment Experiments
    van Putten, Bram
    Knippers, Timmy
    Buurman, Peter
    SOIL SCIENCE, 2010, 175 (11) : 519 - 529
  • [49] Exploratory screening of genes and clusters from microarray experiments
    Tibshirani, R
    Hastie, T
    Narasimhan, B
    Eisen, M
    Sherlock, G
    Brown, P
    Botstein, D
    STATISTICA SINICA, 2002, 12 (01) : 47 - 59
  • [50] Multiplicity issues in microarray experiments
    Bretz, F
    Landgrebe, J
    Brunner, E
    METHODS OF INFORMATION IN MEDICINE, 2005, 44 (03) : 431 - 437