Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2011年 / 4卷 / 06期
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [31] Visual analysis of statistical results from microarray studies of human breast cancer
    Reif, DM
    Moore, JH
    ONCOLOGY REPORTS, 2006, 15 : 1043 - 1047
  • [32] Sample size determination in microarray experiments for class comparison and prognostic classification
    Dobbin, K
    Simon, R
    BIOSTATISTICS, 2005, 6 (01) : 27 - 38
  • [33] Statistical analysis of a gene expression microarray experiment with replication
    Kerr, MK
    Afshari, CA
    Bennett, L
    Bushel, P
    Martinez, J
    Walker, NJ
    Churchill, GA
    STATISTICA SINICA, 2002, 12 (01) : 203 - 217
  • [34] Effects of filtering by Present call on analysis of microarray experiments
    Jeanette N McClintick
    Howard J Edenberg
    BMC Bioinformatics, 7
  • [35] Statistical approaches for the analysis of DNA methylation microarray data
    Siegmund, Kimberly D.
    HUMAN GENETICS, 2011, 129 (06) : 585 - 595
  • [36] Statistical Learning Analysis of Thyroid Cancer Microarray Data
    Petrini, Ivan
    Cecchini, Rocio L.
    Mascaro, Marilina
    Ponzoni, Ignacio
    Carballido, Jessica A.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 90 - 102
  • [37] Distributional fold change test - a statistical approach for detecting differential expression in microarray experiments
    Farztdinov, Vadim
    McDyer, Fionnuala
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2012, 7
  • [38] Microarray experiments and factors which affect their reliability
    Jaksik, Roman
    Iwanaszko, Marta
    Rzeszowska-Wolny, Joanna
    Kimmel, Marek
    BIOLOGY DIRECT, 2015, 10
  • [39] A FLEXIBLE NONPARAMETRIC APPROACH TO FIND CANDIDATE GENES ASSOCIATED WITH DISEASE IN MICROARRAY EXPERIMENTS
    Hossain, Ahmed
    Willan, Andrew R.
    Beyene, Joseph
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 11 (02)
  • [40] Statistical considerations for preclinical studies
    Aban, Inmaculada B.
    George, Brandon
    EXPERIMENTAL NEUROLOGY, 2015, 270 : 82 - 87