Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2011年 / 4卷 / 06期
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [21] Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis
    Marot, Guillemette
    Mayer, Claus-Dieter
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [22] Reproducible statistical analysis in microarray profiling studies
    Mansmann, U
    Rushhaupt, M
    Huber, W
    METHODS OF INFORMATION IN MEDICINE, 2006, 45 (02) : 139 - 145
  • [23] Statistical analysis of microarray data: a Bayesian approach
    Gottardo, R
    Pannucci, JA
    Kuske, CR
    Brettin, T
    BIOSTATISTICS, 2003, 4 (04) : 597 - 620
  • [24] Contaminated normal modeling with application to microarray data analysis
    Dai, Hongying
    Charnigo, Richard
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (03): : 315 - 332
  • [25] Sample size calculations based on ranking and selection in microarray experiments
    Matsui, Shigeyuki
    Zeng, Shu
    Yamanaka, Takeharu
    Shaughnessy, John
    BIOMETRICS, 2008, 64 (01) : 217 - 226
  • [26] Statistical designs for two-color microarray experiments involving technical replication
    Tsai, Shin-Fu
    Liao, Chen-Tuo
    Chai, Feng-Shun
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 2078 - 2090
  • [27] Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    Dudoit, S
    Yang, YH
    Callow, MJ
    Speed, TP
    STATISTICA SINICA, 2002, 12 (01) : 111 - 139
  • [28] The efficiency of pooling mRNA in microarray experiments
    Kendziorski, CM
    Zhang, Y
    Lan, H
    Attie, AD
    BIOSTATISTICS, 2003, 4 (03) : 465 - 477
  • [29] Atlas of Signaling for Interpretation of Microarray Experiments
    Kotelnikova, Ekaterina
    Ivanikova, Natalia
    Kalinin, Andrey
    Yuryev, Anton
    Daraselia, Nikolai
    PLOS ONE, 2010, 5 (02):
  • [30] Statistical Considerations in Meta-analysis
    Barza, Michael
    Trikalinos, Thomas A.
    Lau, Joseph
    INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2009, 23 (02) : 195 - +