Statistical Considerations for Analysis of Microarray Experiments

被引:20
|
作者
Owzar, Kouros [1 ]
Barry, William T. [1 ]
Jung, Sin-Ho [1 ]
机构
[1] Duke Univ, Duke Univ CALGB Stat Ctr, Dept Biostat & Bioinformat, Durham, NC 27710 USA
来源
CTS-CLINICAL AND TRANSLATIONAL SCIENCE | 2011年 / 4卷 / 06期
关键词
microarrays; preprocessing; statistical inference; multiple testing; unsupervised learning; supervised learning; overfitting; validation; pathways; clinical trials; power; software; FALSE DISCOVERY RATE; GENE-EXPRESSION; FUNCTIONAL CATEGORIES; NORMALIZATION METHODS; SAMPLE-SIZE; CLASSIFICATION; CARCINOMAS;
D O I
10.1111/j.1752-8062.2011.00309.x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Microarray technologies enable the simultaneous interrogation of expressions from thousands of genes from a biospecimen sample taken from a patient. This large set of expressions generates a genetic profile of the patient that may be used to identify potential prognostic or predictive genes or genetic models for clinical outcomes. The aim of this article is to provide a broad overview of some of the major statistical considerations for the design and analysis of microarrays experiments conducted as correlative science studies to clinical trials. An emphasis will be placed on how the lack of understanding and improper use of statistical concepts and methods will lead to noise discovery and misinterpretation of experimental results. Clin Trans Sci 2011; Volume 4: 466477
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [1] Sequential Design for Microarray Experiments
    Durrieu, Gilles
    Briollais, Laurent
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 650 - 660
  • [2] Integrating biological information into the statistical analysis and design of microarray experiments
    Rosa, G. J. M.
    Vazquez, A. I.
    ANIMAL, 2010, 4 (02) : 165 - 172
  • [3] Bayesian Analysis of Comparative Microarray Experiments by Model Averaging
    Sebastiani, Paola
    Xie, Hui
    Ramoni, Marco F.
    BAYESIAN ANALYSIS, 2006, 1 (04): : 707 - 732
  • [4] Microarray analysis of gene expression: considerations in data mining and statistical treatment
    Verducci, Joseph S.
    Melfi, Vincent F.
    Lin, Shili
    Wang, Zailong
    Roy, Sashwati
    Sen, Chandan K.
    PHYSIOLOGICAL GENOMICS, 2006, 25 (03) : 355 - 363
  • [5] The needed replicates of arrays in microarray experiments for reliable statistical evaluation
    Wang, SJ
    Chen, JJ
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 35 - 50
  • [6] Microarray analysis: basic strategies for successful experiments
    Scott A. Ness
    Molecular Biotechnology, 2007, 36 : 205 - 219
  • [7] Microarray analysis: basic strategies for successful experiments
    Ness, Scott A.
    MOLECULAR BIOTECHNOLOGY, 2007, 36 (03) : 205 - 219
  • [8] Predictive biomarkers for treatment selection: statistical considerations
    Chen, James J.
    Lu, Tzu-Pin
    Chen, Yu-Chuan
    Lin, Wei-Jiun
    BIOMARKERS IN MEDICINE, 2015, 9 (11) : 1121 - 1135
  • [9] Statistical implications of pooling RNA samples for microarray experiments
    Xuejun Peng
    Constance L Wood
    Eric M Blalock
    Kuey Chu Chen
    Philip W Landfield
    Arnold J Stromberg
    BMC Bioinformatics, 4
  • [10] Optimized Ranking and Selection Methods for Feature Selection with Application in Microarray Experiments
    Cui, Xinping
    Zhao, Haibing
    Wilson, Jason
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (02) : 223 - 239