Feedback control of the proximity to marginal RWM stability using active MHD spectroscopy

被引:15
作者
Hanson, J. M. [1 ,2 ]
Reimerdes, H. [1 ]
Lanctot, M. J. [1 ]
In, Y. [3 ]
La Haye, R. J. [4 ]
Jackson, G. L. [4 ]
Navratil, G. A. [1 ]
Okabayashi, M. [5 ]
Sieck, P. E. [4 ]
Strait, E. J. [4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA
[3] FAR TECH Inc, San Diego, CA 92121 USA
[4] Gen Atom Co, San Diego, CA 92186 USA
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
RESISTIVE WALL MODES; STORED ENERGY; STABILIZATION; INSTABILITIES; DISCHARGES; DYNAMICS; ROTATION; PLASMAS; SYSTEM;
D O I
10.1088/0029-5515/52/1/013003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
DIII-D experiments yield the first proof-of-principle results in feedback control of the proximity to the resistive wall mode (RWM) stability boundary using an active MHD spectroscopic stability measurement and neutral beam injection heating. In contrast to calculations of the stability of reconstructed equilibria, the spectroscopic measurement is independent of the assumed RWM stability model. The real-time implementation enables the control system to react to unforeseen changes in plasma parameters and hence stability limits. In the experimentally accessed regime, near but below the ideal-MHD no-wall limit for the n = 1 external kink instability, the control dynamics are described by a linear model that depends on the plasma stored energy. This model is used to aid in optimizing feedback gain settings.
引用
收藏
页数:7
相关论文
共 27 条
[21]   A novel technology by using three-stage opamp design based on feedback capacitor for islanded mode microgrid stability control [J].
Talaat, M. ;
Mohamed, Ahmed Reda ;
Sedhom, Bishoy E. ;
Mousa, Mahmoud A. A. ;
Song, Dongran ;
Alblawi, Adel .
JOURNAL OF ENERGY STORAGE, 2024, 99
[22]   Adaptive neural control of vehicle yaw stability with active front steering using an improved random projection neural network [J].
Huang, Wei ;
Wong, Pak Kin ;
Wong, Ka In ;
Vong, Chi Man ;
Zhao, Jing .
VEHICLE SYSTEM DYNAMICS, 2021, 59 (03) :396-414
[23]   Adaptive Kalman Filter with L2 Feedback Control for Active Suspension Using a Novel 9-DOF Semi-Vehicle Model [J].
Yang, Huan ;
Liu, Jiang ;
Li, Min ;
Zhang, Xilong ;
Liu, Jianze ;
Zhao, Yulan .
ACTUATORS, 2021, 10 (10)
[24]   Real-Time Nonlinear Model Predictive Control of Active Power Filter Using Self-Feedback Recurrent Fuzzy Neural Network Estimator [J].
Fei, Juntao ;
Liu, Lunhaojie .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) :8366-8376
[25]   Force-derivative feedback semi-active control of base-isolated buildings using large-scale MR fluid dampers [J].
Rodriguez, Arturo ;
Pozo, Francesc ;
Bahar, Arash ;
Acho, Leonardo ;
Vidal, Yolanda ;
Rodellar, Jose .
STRUCTURAL CONTROL & HEALTH MONITORING, 2012, 19 (01) :120-145
[26]   Active alignment of receiving beam for coaxial optics in wind sensing coherent Doppler lidar using feedback control based on the processing of heterodyne-detected signal [J].
Ito, Yusuke ;
Imaki, Masaharu ;
Tanaka, Hisamichi ;
Hagio, Masahiro ;
Inokuchi, Hamaki ;
Kameyama, Shumpei .
APPLIED OPTICS, 2022, 61 (02) :352-361
[27]   Articulated Vehicle Lateral Stability Management via Active Rear-Whee Steering of Tractor Using Fuzzy Logic and Model Predictive Control [J].
Sahin, Hasan ;
Akalin, Ozgen .
SAE INTERNATIONAL JOURNAL OF COMMERCIAL VEHICLES, 2020, 13 (02) :115-128