Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily

被引:27
作者
Li, Wenqi
Liu, Xiaohua
Lu, Yingmin [1 ]
机构
[1] Beijing Forestry Univ, Coll Landscape Architecture, 35 Qinghua East Rd, Beijing 100083, Peoples R China
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Vernalization; Lily; Transcriptome; RNA-Seq; Flower differentiation; FLORAL MERISTEM IDENTITY; FLOWERING-LOCUS-C; ARABIDOPSIS; EXPRESSION; TIME; REPRESSOR; DATABASE; PROMOTE; WINTER;
D O I
10.1186/s12864-016-2955-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Oriental hybrid lily 'Sorbonne', a very important cut flower for lily, is enjoyed great popularity in the world, but it must experience a period of low winter temperature to initiate or accelerate the flowering process. To gain a better understanding of the temperature signaling pathway and the molecular metabolic reactions involved in the vernalization response, a genome-wide transcriptional analysis using RNA-Seq was performed. Results: 188,447,956 sequencing reads was assembled into 66,327 unigenes and showed similarity to known proteins in the Swiss-Prot protein database, and 2,893, 30,406 and 60,737 unigenes aligned to existing sequences in the KEGG, COG, and GO databases. Based on qRT-PCR results, we studied the expression of three signal regulation pathways genes-the plant hormones signal transduction (LoAP2, LoIAA1, LoARF10), the DNA methylation (LoCMT, LoFLD), and vernalizatin pathway (LoFLC, LoVRN1, LoVRN2, LoFT, LoSOC1, LoLFY, LoSVP) in the immature flower buds of Oriental hybrid lily. In addition, we identified two vernalizaiton-related genes (LoSVP and LoVRN1) from the cDNA library, which appear to be promising candidates for playing key roles in the development and response of flowering in Oriental lily plants, and LoSVP had a function in delaying flowering but LoVRN1could promote flowering early. Conclusions: We collected a sample for transcriptome sequencing and comparison when the bulb's apical meristem was in the time of floral transition when the apical meristem had not converted into the morphological differentiation process, which helped to obtain more genes playing key roles in the floral induction pathways. The upstream and downstream relationship between different genes were forecasted by the analysis of genes' expression levels in a wide range of time. Future research that is targeted towards how genes interact on each other, which will promote establishing and perfecting the molecular mechanisms of floral induction pathway by vernalization.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Agave macroacantha Transcriptome Reveals Candidate CNGC Genes Responsive to Cold Stress in Agave
    Li, Yubo
    Hu, Xiaoli
    Mkapa, Dietram Samson
    Xie, Li
    Guo, Pingan
    Tan, Shibei
    Zhang, Weiyi
    Chen, Helong
    Huang, Xing
    Yi, Kexian
    PLANTS-BASEL, 2025, 14 (04):
  • [42] Transcriptome Analysis Reveals Candidate Genes Involved in Low Temperature Stress in Bell Pepper
    Ji, L.
    Li, P.
    Su, Zh
    Li, M.
    Wang, H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (06) : 1116 - 1125
  • [43] Comparative Analysis of Root Transcriptome Reveals Candidate Genes and Expression Divergence of Homoeologous Genes in Response to Water Stress in Wheat
    Derakhshani, Behnam
    Ayalew, Habtamu
    Mishina, Kohei
    Tanaka, Tsuyoshi
    Kawahara, Yoshihiro
    Jafary, Hossein
    Oono, Youko
    PLANTS-BASEL, 2020, 9 (05):
  • [44] Transcriptome Sequencing Reveals Key Genes for Sunflower Unsaturated Fatty Acid Synthesis
    Huang, Qixiu
    Xiang, Lijun
    Zhang, Li
    Maimaiti, Yushanjiang
    Luo, Wenfang
    Lei, Zhonghua
    AGRONOMY-BASEL, 2023, 13 (03):
  • [45] Transcriptome Analysis Reveals Key Genes Involved in Weevil Resistance in the Hexaploid Sweetpotato
    Nokihara, Kanoko
    Okada, Yoshihiro
    Ohata, Shinichiro
    Monden, Yuki
    PLANTS-BASEL, 2021, 10 (08):
  • [46] Transcriptome analysis reveals key genes and pathways associated with piglet fetal mummification
    Wang, Shujie
    Wu, Pingxian
    Wang, Kai
    Ji, Xiang
    Chen, Dong
    Jiang, Anan
    Liu, Yihui
    Xiao, Weihang
    Jiang, Yanzhi
    Zhu, Li
    Xu, Xu
    Li, Mingzhou
    Li, Xuewei
    Tang, Guoqing
    GENOME, 2021, 64 (12) : 1029 - 1040
  • [47] Transcriptome Analysis Reveals Key Genes Involved in Fatty Acid and Triacylglycerol Accumulation in Developing Sunflower Seeds
    Meng, Wanqiu
    Zeng, Linglu
    Yang, Xiuli
    Chen, Dawei
    Sun, Li
    GENES, 2025, 16 (04)
  • [48] Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods
    Yan, Jindong
    He, Jiacheng
    Li, Jian'an
    Ren, Shuangshuang
    Wang, Ying
    Zhou, Junqin
    Tan, Xiaofeng
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [49] Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress
    Liu, Renjian
    Shu, Bingbing
    Wang, Yuyuan
    Yu, Bingwei
    Wang, Yixi
    Gan, Yuwei
    Liang, Yonggui
    Qiu, Zhengkun
    Yang, Jianguo
    Yan, Shuangshuang
    Cao, Bihao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 211
  • [50] Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress
    Uyar, Gul Sema
    Pandey, Anamika
    Hamurcu, Mehmet
    Vyhnanek, Tomas
    Harmankaya, Mustafa
    Topal, Ali
    Gezgin, Sait
    Khan, Mohd. Kamran
    AGRONOMY-BASEL, 2025, 15 (01):