Modal analysis and interface tracking of multiphase flows using Dynamic Mode Decomposition

被引:3
作者
Sashittal, Palash [1 ]
Chiodi, Robert [1 ]
Morgan, Timothy B. [2 ,3 ]
Desjardins, Olivier [4 ]
Heindel, Theodore J. [2 ,3 ]
Bodony, Daniel J. [1 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[2] Iowa State Univ, Ctr Multiphase Flow Res & Educ, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[4] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
关键词
Atomizing jet; Dynamic mode decomposition; Optical flow estimation; Reduced-order modeling; 3-DIMENSIONAL FLOWS; FLUID-FLOW; VELOCIMETRY;
D O I
10.1016/j.ijmultiphaseflow.2022.104198
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Non-invasive visualization techniques for multiphase flows are critical to understanding primary atomization and sprays. We use back-lit imaging to identify the liquid-gas interface of two-phase flows at high temporal and spatial resolutions and employ Dynamic Mode Decomposition (DMD) to study the shape and frequency of instabilities of a liquid jet surrounded by a coaxial annular airblast atomizer. However, DMD is not suitable for interface tracking, so we develop a data-driven two-step approach using the optical sensor data. The method uses DMD on the optical flow field estimated from image snapshot pairs. We demonstrate our method to a representative toy problem of an oscillating drop and on the primary atomization of a numerical planar liquid jet. Finally, we apply our method to the experimental liquid jet from the coaxial airblast atomizer using back-lit imaging. Our method is able to accurately reconstruct and predict the flow and preserves the sharpness of the fluid interface.
引用
收藏
页数:16
相关论文
共 39 条
[31]  
Morgan T.B., 2020, ILASS AMERICAS 31 AN
[32]   FEEDBACK CONTROL OF THE SPRAY LIQUID DISTRIBUTION OF ELECTROSTATICALLY ASSISTED COAXIAL ATOMIZATION [J].
Osuna-Orozco, Rodrigo ;
Machicoane, Nathanael ;
Huck, Peter D. ;
Aliseda, Alberto .
ATOMIZATION AND SPRAYS, 2020, 30 (01) :1-9
[33]   A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method [J].
Owkes, Mark ;
Desjardins, Olivier .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 270 :587-612
[34]   Particle image velocimetry with optical flow [J].
Quenot, GM ;
Pakleza, J ;
Kowalewski, TA .
EXPERIMENTS IN FLUIDS, 1998, 25 (03) :177-189
[35]  
Raffel M, 2007, EXP FLUID MECH, P1, DOI 10.1007/978-3-540-72308-0
[36]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[37]   Dynamic mode decomposition of numerical and experimental data [J].
Schmid, Peter J. .
JOURNAL OF FLUID MECHANICS, 2010, 656 :5-28
[38]   Fundamentals of digital particle image velocimetry [J].
Westerweel, J .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1997, 8 (12) :1379-1392
[39]   Discrete orthogonal decomposition and variational fluid flow estimation [J].
Yuan, Jing ;
Schnoerr, Christoph ;
Memin, Etienne .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (01) :67-80